Warmup 2: Regular Languages and CFGs

[about 3/4 length of actual test]

1. Given a string \(x \), an expansion of \(x \) is any string obtained by repeating some of the letters some number of times. For example, each of CCAATT, CAT and CCCCCCAAT are expansions of CAT. Given a language \(L \), the expansion of \(L \) is all possible expansions of strings in \(L \). Show that the regular languages are closed under expansion.

 e.g. transform \(RE \) by replacing each char \(x \) by \(xx^* \)
 e.g. \((0+11)*0 \) \(\Rightarrow (00^*+11^*11^*)00^* \)

2. For each language, give 3 strings that are pairwise distinguishable with respect to that language:
 (a) The set of all binary strings whose first and last bit are the same
 e.g. \(11, 1001 \)
 \[\text{[first and last bit matter]} \]
 (b) The set of all binary strings that contain 101 as substring
 e.g. \(\varepsilon, 110 \)
 \[\text{[progress on containing 101]} \]
 (c) The set of all binary strings of odd length.
 \[\text{only can find 2 distinguishable} \]

3. Give a CFG for the set of all even-length palindromes from alphabet \(\{a, b\} \) that contain \(abba \) as a substring.

 \[P \rightarrow aPa | bPb | abbaQ | abba \]
 \[Q \rightarrow aQa | bQb \varepsilon \]
 \[\text{[Q does all even-length palindromes]} \]

4. Consider the following CFG with start variable \(S \):

 \[
 S \rightarrow 0T0 | 1T1 | 0T1 | 1TO | \varepsilon \\
 T \rightarrow 0S | 1S | \varepsilon
 \]

 (a) Give a derivation tree for the string 01010

 (b) Describe in English the language of this grammar.

 \[\text{all binary strings} \]
 \[\text{except single 0 or 1} \]