Location Functions on Trees: A Survey and Some Recent Results

F.R. McMorris

Department of Applied Mathematics
Illinois Institute of Technology
Chicago, Illinois
&
Department of Mathematics
University of Louisville
Louisville, Kentucky
“Working with trees

“Working with trees is just monkey business”
“During the past 15 years, this area of network location has experienced a fairly rapid growth – in terms of both potential applications and theoretical development.” – D.R. Shier & P.M Dearing, *Operations Research* 1983
Outline of the talk

- Introduction
Outline of the talk

- Introduction
- Three standard location functions on finite metric spaces
Outline of the talk

- Introduction
- Three standard location functions on finite metric spaces
- Properties ("axioms") used to characterize these functions
Outline of the talk

- Introduction
- Three standard location functions on finite metric spaces
- Properties ("axioms") used to characterize these functions
- Some old and very new results
The general setting

Let \((X, d)\) be a finite metric space and \(X^* = \bigcup_{k>1} X^k\). The elements of \(X^*\) are called *profiles* and are denoted \(\pi = (x_1, \ldots, x_k)\), \(\pi' = (y_1, \ldots, y_m)\), etc.
The general setting

Let (X, d) be a finite metric space and $X^* = \bigcup_{k>1} X^k$. The elements of X^* are called *profiles* and are denoted $\pi = (x_1, \ldots, x_k)$, $\pi' = (y_1, \ldots, y_m)$, etc. For the profile π, think k “users” (voters, customers, clients, agents, etc.) with each user having a preferred location point in X.
The general setting

Let \((X, d)\) be a finite metric space and \(X^* = \bigcup_{k>1} X^k\). The elements of \(X^*\) are called profiles and are denoted \(\pi = (x_1, \ldots, x_k), \pi' = (y_1, \ldots, y_m)\), etc. For the profile \(\pi\), think \(k\) “users” (voters, customers, clients, agents, etc.) with each user having a preferred location point in \(X\).

A location function on \(X\) is be a function of the form \(L : X^* \rightarrow 2^X \setminus \{\emptyset\}\).
Let \((X, d)\) be a finite metric space and \(X^* = \bigcup_{k>1} X^k\). The elements of \(X^*\) are called profiles and are denoted \(\pi = (x_1, \ldots, x_k), \pi' = (y_1, \ldots, y_m)\), etc. For the profile \(\pi\), think \(k\) “users” (voters, customers, clients, agents, etc.) with each user having a preferred location point in \(X\).

A location function on \(X\) is be a function of the form \(L : X^* \rightarrow 2^X \setminus \{\emptyset\}\). Our interest is in location functions that return, for any profile \(\pi\), a set of points that minimize an objective criterion of “remoteness” from \(\pi\).
Location functions on metric space \((X, d)\)

Locating a fire station versus locating a mall or distribution center.

\[\text{Median Function: } Med(\pi) = \{ x \in X : \sum_{i=1}^{k} d(x, x_i) \text{ is minimum} \} \]

\[\text{Center Function: } Cen(\pi) = \{ x \in X : e(x, \pi) \text{ is minimum} \} \]

\[e(x, \pi) = \max\{ d(x, x_1), d(x, x_2), \ldots, d(x, x_k) \} \]

\[\text{Mean Function: } \text{Mean}(\pi) = \{ x \in X : \sum_{i=1}^{k} d^2(x, x_i) \text{ is minimum} \} \]
Location functions on metric space (X, d)

Locating a fire station versus locating a mall or distribution center.

- **Median Function**: $Med(\pi) = \{x : \sum_{i=1}^{k} d(x, x_i) \text{ is minimum}\}$, for any profile $\pi = (x_1, \ldots, x_k)$. (mall)
Locating a fire station versus locating a mall or distribution center.

- **Median Function:** $\text{Med}(\pi) = \{x : \sum_{i=1}^{k} d(x, x_i) \text{ is minimum}\}$, for any profile $\pi = (x_1, \ldots, x_k)$. (mall)

- **Center Function:** $\text{Cen}(\pi) = \{x \in X : e(x, \pi) \text{ is minimum}\}$, where $e(x, \pi) = \max\{d(x, x_1), d(x, x_2), \ldots, d(x, x_k)\}$ for any profile π. (fire station)
Location functions on metric space \((X, d)\)

Locating a fire station versus locating a mall or distribution center.

- **Median Function**: \(\text{Med}(\pi) = \{x : \sum_{i=1}^{k} d(x, x_i) \text{ is minimum}\}\), for any profile \(\pi = (x_1, \ldots, x_k)\). (mall)

- **Center Function**: \(\text{Cen}(\pi) = \{x \in X : e(x, \pi) \text{ is minimum}\}\), where \(e(x, \pi) = \max\{d(x, x_1), d(x, x_2), \ldots, d(x, x_k)\}\) for any profile \(\pi\). (fire station)

- **Mean Function**: \(\text{Mean}(\pi) = \{x \in X : \sum_{i=1}^{k} d^2(x, x_i) \text{ is minimum}\}\), for any profile \(\pi\).
The mean and median functions are special instances of the following location function that is inspired by the ℓ_p-norm $\| \cdot \|_p$ with $\| \pi \|_p = \sqrt[p]{\sum_{i=1}^{k} d^p(x, x_i)}$.

ℓ_p-function: $\ell_p(\pi) = \{ x \in X : \sum_{i=1}^{k} d^p(x, x_i) \text{ is minimum} \}$, for any profile π.

ℓ_p-function
Properties of \textit{Med}

It is not hard to show that \textit{Med} always satisfies the following properties on \textbf{any} metric space.
Properties of Med

It is not hard to show that Med always satisfies the following properties on any metric space.

Anonymity (A): For every profile $\pi = (x_1, \ldots, x_k) \in X^*$ and permutation σ of $\{1, \ldots, k\}$, $Med(\pi) = Med(\pi^\sigma)$, where $\pi^\sigma = (x_{\sigma(1)}, \ldots, x_{\sigma(k)})$.
Properties of Med

It is not hard to show that Med always satisfies the following properties on any metric space.

Anonymity (A): For every profile $\pi = (x_1, \ldots, x_k) \in X^*$ and permutation σ of $\{1, \ldots k\}$, $Med(\pi) = Med(\pi^\sigma)$, where $\pi^\sigma = (x_{\sigma(1)}, \ldots, x_{\sigma(k)})$.

Betweenness (B): $Med((x, y)) = \{z : d(x, y) = d(x, z) + d(z, y)\}$.
Properties of Med

It is not hard to show that Med always satisfies the following properties on any metric space.

Anonymity (A): For every profile \(\pi = (x_1, \ldots, x_k) \in X^* \) and permutation \(\sigma \) of \(\{1, \ldots, k\} \), \(\text{Med}(\pi) = \text{Med}(\pi^\sigma) \), where \(\pi^\sigma = (x_{\sigma(1)}, \ldots, x_{\sigma(k)}) \).

Betweenness (B): \(\text{Med}((x, y)) = \{z : d(x, y) = d(x, z) + d(z, y)\} \).

Consistency (C): If \(\text{Med}(\pi_1) \cap \text{Med}(\pi_2) \neq \emptyset \) for profiles \(\pi_1 \) and \(\pi_2 \), then \(\text{Med}(\pi_1 \pi_2) = \text{Med}(\pi_1) \cap \text{Med}(\pi_2) \), where \(\pi_1 \pi_2 \) is the concatenation of \(\pi_1 \) and \(\pi_2 \), i.e., if \(\pi_1 = (x_1, \ldots, x_k) \) and \(\pi_2 = (y_1, \ldots, y_m) \) then \(\pi_1 \pi_2 = (x_1, \ldots, x_k, y_1, \ldots, y_m) \).
Proof of (C)

Let $D(x, \pi) = \sum_{i=1}^{k} d(x, x_i)$.

Assume $\text{Med}(\pi_1) \cap \text{Med}(\pi_2) \neq \emptyset$. Let $x \in \text{Med}(\pi_1) \cap \text{Med}(\pi_2)$, and $z \in \text{Med}(\pi_1 \pi_2)$.

Then $D(x, \pi_1 \pi_2) = D(x, \pi_1) + D(x, \pi_2) \leq D(z, \pi_1) + D(z, \pi_2) = D(z, \pi_1 \pi_2) \leq D(x, \pi_1 \pi_2)$, so $x \in \text{Med}(\pi_1 \pi_2)$.

From above, $D(x, \pi_1) + D(x, \pi_2) = D(z, \pi_1) + D(z, \pi_2)$ so $D(x, \pi_1) \leq D(z, \pi_1)$ and $D(x, \pi_2) \leq D(z, \pi_2)$ imply $D(x, \pi_1) = D(z, \pi_1)$ and $D(x, \pi_2) = D(z, \pi_2)$. i.e., $z \in \text{Med}(\pi_1) \cap \text{Med}(\pi_2)$.

Axioms for location function

Let L be a location function on X.

Anonymity (A): For every profile $\pi = (x_1,\ldots,x_k) \in X^*$ and permutation σ of $\{1,\ldots,k\}$, $L(\pi) = L(\pi\sigma)$, where $\pi\sigma = (x_{\sigma(1)},\ldots,x_{\sigma(k)})$.

Betweenness (B): $L((x,y)) = \{z: d(x,y) = d(x,z) + d(z,y)\}$.

Consistency (C): If $L(\pi_1) \cap L(\pi_2) \neq \emptyset$ for profiles π_1 and π_2, then $L(\pi_1\pi_2) = L(\pi_1) \cap L(\pi_2)$.

Let L be a location function on X.

Anonymity (A): For every profile $\pi = (x_1, \ldots x_k) \in X^*$ and permutation σ of $\{1, \ldots k\}$, $L(\pi) = L(\pi^\sigma)$, where $\pi^\sigma = (x_{\sigma(1)}, \ldots, x_{\sigma(k)})$.
Let L be a location function on X.

Anonymity (A): For every profile $\pi = (x_1, \ldots x_k) \in X^*$ and permutation σ of $\{1, \ldots k\}$, $L(\pi) = L(\pi^\sigma)$, where $\pi^\sigma = (x_{\sigma(1)}, \ldots, x_{\sigma(k)})$.

Betweenness (B): $L((x, y)) = \{z : d(x, y) = d(x, z) + d(z, y)\}$.
Axioms for location function

Let L be a location function on X.

Anonymity (A): For every profile $\pi = (x_1, \ldots, x_k) \in X^*$ and permutation σ of $\{1, \ldots, k\}$, $L(\pi) = L(\pi^\sigma)$, where $\pi^\sigma = (x_{\sigma(1)}, \ldots, x_{\sigma(k)})$.

Betweenness (B): $L((x, y)) = \{z : d(x, y) = d(x, z) + d(z, y)\}$.

Consistency (C): If $L(\pi_1) \cap L(\pi_2) \neq \emptyset$ for profiles π_1 and π_2, then $L(\pi_1 \pi_2) = L(\pi_1) \cap L(\pi_2)$.
Let L be a location function on X satisfying (A), (B) and (C). Is this enough to guarantee that $L = Med$?
Let L be a location function on X satisfying (A), (B) and (C). Is this enough to guarantee that $L = Med$?

Answer:
Let L be a location function on X satisfying (A), (B) and (C). Is this enough to guarantee that $L = Med$?

Answer: Sometimes “yes”!
ABC Theorem

Consider a finite connected graph $G = V, E$ with d the usual graph distance. So (V, d) is a metric space.
Consider a finite connected graph $G = V(, E)$ with d the usual graph distance. So (V, d) is a metric space.

Note that the points in this space are V and that all location points must be on the vertices G. (There is a large literature concerned with location on networks where edges have lengths and location points can be placed on the edges.)
Consider a finite connected graph \(G = V, E \) with \(d \) the usual graph distance. So \((V, d)\) is a metric space.

Note that the points in this space are \(V \) and that all location points must be on the vertices \(G \). (There is a large literature concerned with location on networks where edges have lengths and location points can be placed on the edges.) Further assume the graph is a tree \(T \).
Consider a finite connected graph $G = V(E)$ with d the usual graph distance. So (V, d) is a metric space.

Note that the points in this space are V and that all location points must be on the vertices G. (There is a large literature concerned with location on networks where edges have lengths and location points can be placed on the edges.) Further assume the graph is a tree T.

A more general result in (McM, H.M. Mulder, F.S. Roberts, DAM 1998) gives the

Collorary: Let L be a location function on the tree T. Then $L = Med$ if and only if L satisfies (A), (B) and (C).
ABC Theorem

Consider a finite connected graph $G = (V, E)$ with d the usual graph distance. So (V, d) is a metric space.

Note that the points in this space are V and that all location points must be on the vertices G. (There is a large literature concerned with location on networks where edges have lengths and location points can be placed on the edges.) Further assume the graph is a tree T.

A more general result in (McM, H.M. Mulder, F.S. Roberts, DAM 1998) gives the

Collorary: Let L be a location function on the tree T. Then $L = Med$ if and only if L satisfies (A), (B) and (C).

The ABC saga over more than a decade resulted in the best ABC theorem to date (H.M. Mulder & B. Novick, DAM 2012?):

Theorem Let L be a location function on a median graph G. Then $L = Med$ on G if and only if L satisfies (A), (B) and (C).
Bob Powers found an example on the covering graph of the 5 element non-distributive lattice M_3 (the “diamond lattice”) where the ABC Theorem does not hold. i.e., there exists a location function that is not the median function, but does satisfy the three axioms.
Bob Powers found an example on the covering graph of the 5 element non-distributive lattice M_3 (the “diamond lattice”) where the ABC Theorem does not hold. i.e., there exists a location function that is not the median function, but does satisfy the three axioms.

Open Problem: Characterize those graphs where the ABC theorem is true.
The Mean Function

It would appear that moving from $p = 1$ to $p = 2$ in the ℓ_p-function world would yield similar, easy to interpret, results on trees.
The Mean Function

It would appear that moving from $p = 1$ to $p = 2$ in the ℓ_p-function world would yield similar, easy to interpret, results on trees.

Recall that the mean function is defined by

$$\text{Mean}(\pi) = \{ x \in X : \sum_{i=1}^{k} d^2(x, x_i) \text{ is minimum} \}.$$
It would appear that moving from $p = 1$ to $p = 2$ in the ℓ_p-function world would yield similar, easy to interpret, results on trees.

Recall that the mean function is defined by

$$\text{Mean}(\pi) = \{ x \in X : \sum_{i=1}^{k} d^2(x, x_i) \text{ is minimum} \}.$$

Obviously Mean satisfies (A), and can be easily shown to satisfy (C).
The Mean Function

It would appear that moving from $p = 1$ to $p = 2$ in the ℓ_p-function world would yield similar, easy to interpret, results on trees.

Recall that the mean function is defined by

$$\text{Mean}(\pi) = \{ x \in X : \sum_{i=1}^{k} d^2(x, x_i) \text{ is minimum} \}.$$

Obviously Mean satisfies (A), and can be easily shown to satisfy (C).

Mean does not satisfy (B), but does satisfy the analogous axiom (J. Biagi, UofL MA Thesis, 2000):

Middleness (Mid): Let $x, y \in V$. If $d(x, y)$ is even, then $L((x, y)) = K_1$ where $d(x, K_1) = d(y, K_1) = d(x, y)/2$. If $d(x, y)$ is odd, then $L((x, y)) = K_2$ where $d(x, K_2) = d(y, K_2)$.
Conjecture: Let L be a location function on a tree T. Then $L = \text{Mean}$ if and only if L satisfies (A), (Mid) and (C).
Conjecture: Let L be a location function on a tree T. Then $L = \text{Mean}$ if and only if L satisfies (A), (Mid) and (C).

Unfortunately \textbf{ALL} the ℓ_p-functions for $p > 1$ satisfy these three axioms.
Conjecture: Let L be a location function on a tree T. Then $L = \text{Mean}$ if and only if L satisfies (A), (Mid) and (C).

Unfortunately ALL the ℓ_p-functions for $p > 1$ satisfy these three axioms.

We needed to add a strong “Property Z” in (McM, H.M. Mulder, O. Ortega, DMAA 2010) to get

Theorem: Let L be a location function on a tree T. Then $L = \text{Mean}$ if and only if L satisfies (A), (Mid), (C) and (Z).
Property Z

\[R_\pi(a, b) = \sum_{x \in \pi_{ba}} d(b, x) - \sum_{x \in \pi_{ab}} d(b, x), \]
\[D_\pi(a, b, c) = 2 \sum_{x \in \pi_{abc}} d(b, x). \]

Property (Z) : Let \(\pi = (x_1, x_2, \ldots, x_n) \) be a profile and \(L \) be a location function on \(T \). If \(L(\pi) = \{a\} \), then
\[R_\pi(b, a) + R_\pi(c, b) > D_\pi(a, b, c) \]
whenever \(ab, bc \in E \).
In another direction

Perhaps looking for an analog to ABC was the wrong way to go.
Perhaps looking for an analog to ABC was the wrong way to go.

For a profile $\pi = (x_1, \ldots, x_k)$ and vertex z, let $\pi \diamond z = (x_1, \ldots, x_k, z)$.

Invariance (In): Let L be a location function on a tree T. L satisfies (In) if: $a \in L(\pi)$ if and only if $L(\pi \diamond a) = \{a\}$ for any profile π.
In another direction

Perhaps looking for an analog to ABC was the wrong way to go.

For a profile $\pi = (x_1, \ldots, x_k)$ and vertex z, let $\pi \diamond z = (x_1, \ldots, x_k, z)$.

Invariance (In): Let L be a location function on a tree T. L satisfies (In) if: $a \in L(\pi)$ if and only if $L(\pi \diamond a) = \{a\}$ for any profile π.

It can be shown with some work that *Mean* satisfies (In); and also the following:

Unanimity (U): For any vertex $a \in T$, $L((a, a, \ldots, a)) = \{a\}$.
In (McM, H.M. Mulder, O. Ortega, Networks 2012) we showed:

Theorem: If L is a location function on the tree T and $p > 1$, then $L = ℓ_p$ if and only if L satisfies (In), (U), and “p-Projection”.
In (McM, H.M. Mulder, O. Ortega, Networks 2012) we showed:

Theorem: If L is a location function on the tree T and $p > 1$, then $L = \ell_p$ if and only if L satisfies (In), (U), and “p-Projection”. (p-Projection is another technical axiom that does the heavy lifting)
In (McM, H.M. Mulder, O. Ortega, Networks 2012) we showed:

Theorem: If L is a location function on the tree T and $p > 1$, then $L = \ell_p$ if and only if L satisfies (In), (U), and “p-Projection”. (p-Projection is another technical axiom that does the heavy lifting)

Theorem: If L is a location function on the tree T, then $L = \text{Mean}$ if and only if L satisfies (In), (U), and “2-Projection”.
p-Projectiveness (p-P): Let $\pi = (x_1, x_2, \ldots, x_k)$ be a profile of odd length, let L be a location function on T, and let p be an integer with $p > 1$. Let $\beta = (z_1, z_2, \ldots, z_k)$ be an out-projected profile of π, and assume $L(\pi) = \{a\}$. If

$$
0 < \binom{p}{1} \ell_{p-1} S_{\beta}(a) + \cdots + \binom{p}{p-1} \ell_{1} S_{\beta}(a) - 2 \binom{p}{1} \ell_{p-1} S_{\beta_{ba}}(a) - 2 \binom{p}{3} \ell_{p-3} S_{\beta_{ba}}(a) - \cdots - 2 \binom{p}{p-1} \ell_{1} S_{\beta_{ba}}(a) + |\pi_{ab}| + |\pi_{ba}| (-1)^p
$$

for any vertex b adjacent to a, then $L(\beta) = \{a\}$.

Open Problems: Find properties much easier to grasp than (Z) and (p-P) that allow for a characterization of Mean on trees. Extending beyond trees is open.
p-Projectiveness (p-P): Let \(\pi = (x_1, x_2, \ldots, x_k) \) be a profile of odd length, let \(L \) be a location function on \(T \), and let \(p \) be an integer with \(p > 1 \). Let \(\beta = (z_1, z_2, \ldots, z_k) \) be an out-projected profile of \(\pi \), and assume \(L(\pi) = \{a\} \). If
\[
0 < \binom{p}{1} \ell_{p-1} S_\beta(a) + \cdots + \binom{p}{p-1} \ell_1 S_\beta(a) - 2\binom{p}{1} \ell_{p-1} S_{\beta ba}(a) - 2\binom{p}{3} \ell_{p-3} S_{\beta ba}(a) - \cdots - 2\binom{p}{p-1} \ell_1 S_{\beta ba}(a) + |\pi_{ab}| + |\pi_{ba}|(-1)^p
\]
for any vertex \(b \) adjacent to \(a \), then \(L(\beta) = \{a\} \).

Open Problems: Find properties much easier to grasp than \((Z)\) and \((p-P)\) that allow for a characterization of \textit{Mean} on trees.
p-Projectiveness (p-P): Let $\pi = (x_1, x_2, \ldots, x_k)$ be a profile of odd length, let L be a location function on T, and let p be an integer with $p > 1$. Let $\beta = (z_1, z_2, \ldots, z_k)$ be an out-projected profile of π, and assume $L(\pi) = \{a\}$. If

$$0 < \binom{p}{1} \ell_{p-1} S_{\beta}(a) + \cdots + \binom{p}{p-1} \ell_1 S_{\beta}(a) - 2 \binom{p}{1} \ell_{p-1} S_{\beta_{ba}}(a) - 2 \binom{p}{3} \ell_{p-3} S_{\beta_{ba}}(a) - \cdots - 2 \binom{p}{p-1} \ell_1 S_{\beta_{ba}}(a) + |\pi_{ab}| + |\pi_{ba}|(-1)^p$$

for any vertex b adjacent to a, then $L(\beta) = \{a\}$.

Open Problems: Find properties much easier to grasp than (Z) and (p-P) that allow for a characterization of *Mean* on trees. Extending beyond trees is open.
Center Function on Trees

Recall the definition: \(\text{Cen}(\pi) = \{ x \in X : e(x, \pi) \text{ is minimum} \} \), where \(e(x, \pi) = \max\{d(x, x_1), d(x, x_2), \ldots, d(x, x_k)\} \).
Center Function on Trees

Recall the definition: \(Cen(\pi) = \{ x \in X : e(x, \pi) \text{ is minimum} \} \),
where \(e(x, \pi) = \max\{d(x, x_1), d(x, x_2), \ldots, d(x, x_k)\} \).

On trees, \(Cen \) clearly satisfies (Mid), and hence not (B) and the
following example shows that it does not satisfy (C):

\[
\text{Let } T \text{ be the path } x_1 x_2 x_3 x_4, \pi_1 = (x_1, x_4) \text{ and } \pi_2 = (x_1, x_3).
\text{Then } Cen(\pi_1) = \{x_2, x_3\} \text{ and } Cen(\pi_2) = \{x_2\} \text{ which gives}
Cen(\pi_1) \cap Cen(\pi_2) = \{x_2\}.
\text{But } Cen((x_1, x_4, x_1, x_3)) = \{x_2, x_3\}.
\text{But } Cen \text{ does satisfy (on any finite metric space):}
\text{Quasi-Consistency (QC): If } L(\pi) = L(\pi') \text{ for profiles } \pi \text{ and } \pi',
\text{then } L(\pi \pi') = L(\pi). \text{Clearly if a location function } L \text{ satisfies (C) then it satisfies (QC).}
Center Function on Trees

Recall the definition: \(\text{Cen}(\pi) = \{ x \in X : e(x, \pi) \text{ is minimum} \} \), where \(e(x, \pi) = \max \{ d(x, x_1), d(x, x_2), \ldots, d(x, x_k) \} \).

On trees, \(\text{Cen} \) clearly satisfies (Mid), and hence not (B) and the following example shows that it does not satisfy (C):

Let \(T \) be the path \(x_1x_2x_3x_4 \), \(\pi_1 = (x_1, x_4) \) and \(\pi_2 = (x_1, x_3) \). Then \(\text{Cen}(\pi_1) = \{ x_2, x_3 \} \) and \(\text{Cen}(\pi_2) = \{ x_2 \} \) which gives \(\text{Cen}(\pi_1) \cap \text{Cen}(\pi_2) = \{ x_2 \} \). But \(\text{Cen}((x_1, x_4, x_1, x_3)) = \{ x_2, x_3 \} \).
Recall the definition: \(\text{Cen}(\pi) = \{ x \in X : e(x, \pi) \text{ is minimum} \} \),
where \(e(x, \pi) = \max\{d(x, x_1), d(x, x_2), \ldots, d(x, x_k)\} \).

On trees, \(\text{Cen} \) clearly satisfies (Mid), and hence not (B) and the following example shows that it does not satisfy (C):

Let \(T \) be the path \(x_1x_2x_3x_4 \), \(\pi_1 = (x_1, x_4) \) and \(\pi_2 = (x_1, x_3) \). Then \(\text{Cen}(\pi_1) = \{x_2, x_3\} \) and \(\text{Cen}(\pi_2) = \{x_2\} \) which gives \(\text{Cen}(\pi_1) \cap \text{Cen}(\pi_2) = \{x_2\} \). But \(\text{Cen}((x_1, x_4, x_1, x_3)) = \{x_2, x_3\} \).

But \(\text{Cen} \) does satisfy (on any finite metric space):

Quasi-Consistency (QC): If \(L(\pi) = L(\pi') \) for profiles \(\pi \) and \(\pi' \),
then \(L(\pi\pi') = L(\pi) \).
Center Function on Trees

Recall the definition: \(\text{Cen}(\pi) = \{ x \in X : e(x, \pi) \text{ is minimum} \} \), where \(e(x, \pi) = \max\{ d(x, x_1), d(x, x_2), \ldots, d(x, x_k) \} \).

On trees, \(\text{Cen} \) clearly satisfies (Mid), and hence not (B) and the following example shows that it does not satisfy (C):

Let \(T \) be the path \(x_1 x_2 x_3 x_4 \), \(\pi_1 = (x_1, x_4) \) and \(\pi_2 = (x_1, x_3) \). Then \(\text{Cen}(\pi_1) = \{ x_2, x_3 \} \) and \(\text{Cen}(\pi_2) = \{ x_2 \} \) which gives \(\text{Cen}(\pi_1) \cap \text{Cen}(\pi_2) = \{ x_2 \} \). But \(\text{Cen}((x_1, x_4, x_1, x_3)) = \{ x_2, x_3 \} \).

But \(\text{Cen} \) does satisfy (on any finite metric space):

Quasi-Consistency (QC): If \(L(\pi) = L(\pi') \) for profiles \(\pi \) and \(\pi' \), then \(L(\pi \pi') = L(\pi) \).

Clearly if a location function \(L \) satisfies (C) then it satisfies (QC).
Characterization of Cen

For a profile π, let $\{\pi\}$ be the set of elements making up π. Then Cen clearly satisfies the next property (on any finite metric space) for a location function L.
Characterization of Cen

For a profile π, let $\{\pi\}$ be the set of elements making up π. Then Cen clearly satisfies the next property (on any finite metric space) for a location function L.

Population Invariant (PI): If $\{\pi\} = \{\pi'\}$, then $L(\pi) = L(\pi')$.
Characterization of \textit{Cen}

For a profile π, let $\{\pi\}$ be the set of elements making up π. Then \textit{Cen} clearly satisfies the next property (on any finite metric space) for a location function L.

Population Invariant (PI): If $\{\pi\} = \{\pi'\}$, then $L(\pi) = L(\pi')$.

Final axiom:

Redundancy (R): Let L be a location function on a tree T. If $x \in T(\{\pi\} - x)$, then $L(\pi - x) = L(\pi)$.
Characterization of Cen

For a profile π, let $\{\pi\}$ be the set of elements making up π. Then Cen clearly satisfies the next property (on any finite metric space) for a location function L.

Population Invariant (PI): If $\{\pi\} = \{\pi'\}$, then $L(\pi) = L(\pi')$.

Final axiom:

Redundancy (R): Let L be a location function on a tree T. If $x \in T(\{\pi\} - x)$, then $L(\pi - x) = L(\pi)$.

Characterization of \(Cen \)

For a profile \(\pi \), let \(\{\pi\} \) be the set of elements making up \(\pi \). Then \(Cen \) clearly satisfies the next property (on any finite metric space) for a location function \(L \).

Population Invariant \((PI)\): If \(\{\pi\} = \{\pi'\} \), then \(L(\pi) = L(\pi') \).

Final axiom:

Redundancy \((R)\): Let \(L \) be a location function on a tree \(T \). If \(x \in T(\{\pi\} - x) \), then \(L(\pi - x) = L(\pi) \).

Theorem: Let \(L \) be a location function on a tree \(T \). Then \(L \) is the center function \(Cen \) on \(T \) if and only if \(L \) satisfies properties \((Mid)\), \((PI)\), \((QC)\) and \((R)\).
Characterize Cen on a more general class of graphs than trees.
Characterize Cen on a more general class of graphs than trees.

Results needed for 2-median, 2-mean, 2-center, etc.