Improving Brooks’ theorem

Landon Rabern

Arizona State University

October 28, 2011
Improving Brooks’ theorem

Landon Rabern

Outline

1. A prison problem
2. Some background
3. The Ore-degree
4. Rephrasing the problem
5. Solving the rephrased problem
 Kierstead and Kostochka’s proof
 Problem solved
 Proof outline
 Mozhan’s lemma
 The recoloring algorithm
6. A spectrum of generalizations
 Generalizing maximum degree
 The generalized bound
 The lower bound on t_{ϵ}
 What about Δ_0?
7. Further improvements
You are a warden in a prison with five large cells. You need to put all the inmates into the cells, but to prevent fighting you cannot put a pair of inmates that have fought before into the same cell. Each inmate in the prison has fought with at most six other inmates and none of the inmates who have fought with six others have fought with each other. Under what conditions can you complete your task?
You are a warden in a prison with five large cells. You need to put all the inmates into the cells, but to prevent fighting you cannot put a pair of inmates that have fought before into the same cell. Each inmate in the prison has fought with at most six other inmates and none of the inmates who have fought with six others have fought with each other. Under what conditions can you complete your task?

- plainly, if there is a group of six inmates who have all fought one another, then you cannot complete your task
You are a warden in a prison with five large cells. You need to put all the inmates into the cells, but to prevent fighting you cannot put a pair of inmates that have fought before into the same cell. Each inmate in the prison has fought with at most six other inmates and none of the inmates who have fought with six others have fought with each other. Under what conditions can you complete your task?

- plainly, if there is a group of six inmates who have all fought one another, then you cannot complete your task
- is this simple necessary condition sufficient?
Greedy coloring

- $C := \{c_1, c_2, c_3, \ldots\}$ an infinite set of colors
Greedy coloring

- $C := \{c_1, c_2, c_3, \ldots \}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \ldots, v_n
Greedy coloring

- \(C := \{c_1, c_2, c_3, \ldots\} \) an infinite set of colors
- \(G \) has vertices ordered \(v_1, v_2, \ldots, v_n \)
- go through the vertices in order, coloring \(v_i \) with the first color not used on a neighbor of \(v_i \)
Greedy coloring

- $C := \{c_1, c_2, c_3, \ldots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \ldots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

For example, say $C := \{\text{red, green, blue, cyan, \ldots}\}$ and G is the 5-cycle:
Greedy coloring

- $C := \{c_1, c_2, c_3, \ldots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \ldots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

For example, say $C := \{\text{red, green, blue, cyan, \ldots}\}$ and G is the 5-cycle:
Greedy coloring

- $C := \{c_1, c_2, c_3, \ldots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \ldots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

For example, say $C := \{\text{red, green, blue, cyan, \ldots}\}$ and G is the 5-cycle:
Greedy coloring

- $C := \{c_1, c_2, c_3, \ldots \}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \ldots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

For example, say $C := \{\text{red, green, blue, cyan, \ldots} \}$ and G is the 5-cycle:

![Diagram of 5-cycle with colors]

G has maximum degree k, then v_i has at most k colored neighbors, so greedy coloring uses at most $k + 1$ colors.
Improving Brooks’ theorem

Landon Rabern

A prison problem
Some background
The Ore-degree
Rephrasing the problem
Solving the problem
A spectrum of generalizations
Further improvements

Greedy coloring

- \(C := \{c_1, c_2, c_3, \ldots \} \) an infinite set of colors
- \(G \) has vertices ordered \(v_1, v_2, \ldots, v_n \)
- go through the vertices in order, coloring \(v_i \) with the first color not used on a neighbor of \(v_i \)

For example, say \(C := \{\text{red, green, blue, cyan, \ldots} \} \) and \(G \) is the 5-cycle:

\begin{center}
\begin{tikzpicture}
 \node[shape=circle,draw=red,inner sep=0pt,minimum size=6mm] (a) at (0,0) {};
 \node[shape=circle,draw=green,inner sep=0pt,minimum size=6mm] (b) at (1,0) {};
 \node[shape=circle,draw=red,inner sep=0pt,minimum size=6mm] (c) at (2,0) {};
 \node[shape=circle,draw=green,inner sep=0pt,minimum size=6mm] (d) at (3,0) {};
 \node[shape=circle,draw=red,inner sep=0pt,minimum size=6mm] (e) at (4,0) {};

 \draw[black, thick] (a) -- (b) -- (c) -- (d) -- (e);
 \draw[black, thick, bend right=60] (e) to (a);
\end{tikzpicture}
\end{center}
Greedy coloring

- $C := \{c_1, c_2, c_3, \ldots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \ldots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

For example, say $C := \{\text{red}, \text{green}, \text{blue}, \text{cyan}, \ldots\}$ and G is the 5-cycle:
Greedy coloring

- $C := \{c_1, c_2, c_3, \ldots \}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \ldots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

For example, say $C := \{\text{red, green, blue, cyan, \ldots} \}$ and G is the 5-cycle:

- if G has maximum degree k, then v_i has at most k colored neighbors, so greedy coloring uses at most $k + 1$ colors
Brooks’ theorem

- \(\chi(G) := \) the minimum number of colors needed to color the vertices of \(G \) so that adjacent vertices receive different colors
Improving Brooks’ theorem

Landon Rabern

A prison problem
Some background
The Ore-degree
Rephrasing the problem
Solving the rephrased problem
A spectrum of generalizations
Further improvements

Brooks’ theorem

• \(\chi(G) \) := the minimum number of colors needed to color the vertices of \(G \) so that adjacent vertices receive different colors

• \(\omega(G) \) := the number of vertices in a largest complete subgraph of \(G \)
Brooks’ theorem

• $\chi(G) \coloneqq$ the minimum number of colors needed to color the vertices of G so that adjacent vertices receive different colors

• $\omega(G) \coloneqq$ the number of vertices in a largest complete subgraph of G

• $\Delta(G) \coloneqq$ the maximum degree of G
Improving Brooks’ theorem

Landon Rabern

A prison problem

Some background

The Ore-degree

Rephrasing the problem

Solving the rephrased problem

A spectrum of generalizations

Further improvements

Brooks’ theorem

- \(\chi(G) \) := the minimum number of colors needed to color the vertices of \(G \) so that adjacent vertices receive different colors
- \(\omega(G) \) := the number of vertices in a largest complete subgraph of \(G \)
- \(\Delta(G) \) := the maximum degree of \(G \)

<table>
<thead>
<tr>
<th>Theorem (Brooks 1941)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every graph with (\Delta \geq 3) satisfies (\chi \leq \max{\omega, \Delta}).</td>
</tr>
</tbody>
</table>
Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.
Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.

Greedily coloring in leaf first order proves Brooks’ theorem.
Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.

Greedily coloring in leaf first order proves Brooks’ theorem
Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.

Greedily coloring in leaf first order proves Brooks’ theorem
Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.

Greedily coloring in leaf first order proves Brooks’ theorem
Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.

Greedily coloring in leaf first order proves Brooks’ theorem.
Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.

Greedily coloring in leaf first order proves Brooks’ theorem.
Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.

Greedily coloring in leaf first order proves Brooks’ theorem.
The Ore-degree

Definition

The **Ore-degree** of an edge xy in a graph G is

$$\theta(xy) := d(x) + d(y).$$

The **Ore-degree** of a graph G is

$$\theta(G) := \max_{xy \in E(G)} \theta(xy).$$
The Ore-degree

Definition

The *Ore-degree* of an edge xy in a graph G is

$$\theta(xy) := d(x) + d(y).$$

The *Ore-degree* of a graph G is

$$\theta(G) := \max_{xy \in E(G)} \theta(xy).$$

- every graph satisfies $\left\lfloor \frac{\theta}{2} \right\rfloor \leq \Delta$
The Ore-degree

Definition

The **Ore-degree** of an edge xy in a graph G is

$$\theta(xy) := d(x) + d(y).$$

The **Ore-degree** of a graph G is

$$\theta(G) := \max_{xy \in E(G)} \theta(xy).$$

- every graph satisfies $\left\lfloor \frac{\theta}{2} \right\rfloor \leq \Delta$
- greedy coloring (in any order) shows that every graph satisfies $\chi \leq \left\lfloor \frac{\theta}{2} \right\rfloor + 1$
Kierstead and Kostochka’s generalization

Theorem (Kierstead and Kostochka 2009)

Every graph with $\theta \geq 12$ satisfies $\chi \leq \max \{\omega, \left\lfloor \frac{\theta}{2} \right\rfloor \}$.
Kierstead and Kostochka’s generalization

Theorem (Kierstead and Kostochka 2009)

Every graph with $\theta \geq 12$ satisfies $\chi \leq \max \{\omega, \left\lfloor \frac{\theta}{2} \right\rfloor \}$.

Kierstead and Kostochka conjectured that the 12 could be reduced to 10. That this would be best possible can be seen from the following example which has $\theta = 9$, $\omega = 4$ and $\chi = 5$.
Kierstead and Kostochka’s generalization

Theorem (Kierstead and Kostochka 2009)

Every graph with $\theta \geq 12$ satisfies $\chi \leq \max \{\omega, \left\lfloor \frac{\theta}{2} \right\rfloor \}$.

Kierstead and Kostochka conjectured that the 12 could be reduced to 10. That this would be best possible can be seen from the following example which has $\theta = 9$, $\omega = 4$ and $\chi = 5$.

![Graph](image)

Figure: O_5, a counterexample with $\theta = 9$.

Rephrasing the problem

Definition

A graph G is called *vertex critical* if $\chi(G - v) < \chi(G)$ for each $v \in V(G)$.
Rephrasing the problem

Definition

A graph G is called vertex critical if $\chi(G - v) < \chi(G)$ for each $v \in V(G)$.

Definition

Let G be a vertex critical graph. The low vertex subgraph $L(G)$ is the graph induced on the vertices of degree $\chi(G) - 1$. The high vertex subgraph $H(G)$ is the graph induced on the vertices of degree at least $\chi(G)$.
Improving Brooks’ theorem

Landon Rabern

A prison problem

Some background

The Ore-degree

Rephrasing the problem

Solving the rephrased problem

A spectrum of generalizations

Further improvements

Rephrasing the problem

Definition

A graph G is called **vertex critical** if $\chi(G - v) < \chi(G)$ for each $v \in V(G)$.

Definition

Let G be a vertex critical graph. The **low vertex subgraph** $\mathcal{L}(G)$ is the graph induced on the vertices of degree $\chi(G) - 1$. The **high vertex subgraph** $\mathcal{H}(G)$ is the graph induced on the vertices of degree at least $\chi(G)$.

Problem

Prove that $K_{\Delta(G) + 1}$ is the only vertex critical graph G with $\chi(G) \geq \Delta(G) \geq 6$ such that $\mathcal{H}(G)$ is edgeless.
Kierstead and Kostochka’s proof

- the proof is high-tech and clean, it uses both of the following
Kierstead and Kostochka’s proof

- the proof is high-tech and clean, it uses both of the following
 - Alon and Tarsi’s algebraic list coloring theorem
Kierstead and Kostochka’s proof

- the proof is high-tech and clean, it uses both of the following
- Alon and Tarsi’s algebraic list coloring theorem
- a result of Stiebitz from 1982 proving a conjecture of Gallai stating that $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$
• the proof is high-tech and clean, it uses both of the following
• Alon and Tarsi’s algebraic list coloring theorem
• a result of Stiebitz from 1982 proving a conjecture of Gallai stating that $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$
• using these it is basically just a counting argument
Kierstead and Kostochka’s proof

• the proof is high-tech and clean, it uses both of the following
 • Alon and Tarsi’s algebraic list coloring theorem
 • a result of Stiebitz from 1982 proving a conjecture of Gallai stating that $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$
 • using these it is basically just a counting argument
 • unfortunately, it only works for $\Delta \geq 7$
To get down to $\Delta = 6$, go low-tech and get dirty.
To get down to \(\Delta = 6 \), go low-tech and get dirty.

Theorem (R. 2010)

\[
K_{\Delta(G)+1} \text{ is the only vertex critical graph } G \text{ with } \\
\chi(G) \geq \Delta(G) \geq 6 \text{ and } \omega(\mathcal{H}(G)) \leq \left\lfloor \frac{\Delta(G)}{2} \right\rfloor - 2.
\]
To get down to $\Delta = 6$, go low-tech and get dirty.

Theorem (R. 2010)

\[K_{\Delta(G)+1} \text{ is the only vertex critical graph } G \text{ with } \chi(G) \geq \Delta(G) \geq 6 \text{ and } \omega(H(G)) \leq \left\lfloor \frac{\Delta(G)}{2} \right\rfloor - 2. \]

- setting $\omega(H(G)) = 1$ proves Kierstead and Kostochka’s conjecture
To get down to $\Delta = 6$, go low-tech and get dirty.

Theorem (R. 2010)

$K_{\Delta(G) + 1}$ is the only vertex critical graph G with $
\chi(G) \geq \Delta(G) \geq 6$ and $\omega(H(G)) \leq \left\lfloor \frac{\Delta(G)}{2} \right\rfloor - 2$.

- setting $\omega(H(G)) = 1$ proves Kierstead and Kostochka’s conjecture
- equivalently, as long as there is no group of six inmates who have all fought one another, you (the warden) can complete your inmate-cell-assignment task
Proof outline

- start with a minimal counterexample G
Proof outline

• start with a minimal counterexample G
• for any induced subgraph H, $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$
Proof outline

- start with a minimal counterexample G
- for any induced subgraph H, $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Goal

Construct a subgraph H for which such a list assignment can always be completed.
Proof outline

• start with a minimal counterexample G

• for any induced subgraph H, $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Goal

Construct a subgraph H for which such a list assignment can always be completed.

• we need H to have large degrees to get large lists, so H will be “dense”
Proof outline

- start with a minimal counterexample G
- for any induced subgraph H, $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Goal

Construct a subgraph H for which such a list assignment can always be completed.

- we need H to have large degrees to get large lists, so H will be “dense”
- first, use minimality of G to exclude some troublesome H’s
Proof outline

- start with a minimal counterexample G
- for any induced subgraph H, $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Goal

Construct a subgraph H for which such a list assignment can always be completed.

- we need H to have large degrees to get large lists, so H will be “dense”
- first, use minimality of G to exclude some troublesome H’s
- run the following recoloring algorithm to construct H
Definition

Let G be a vertex critical graph. Let $a \geq 1$ and r_1, \ldots, r_a be such that $1 + \sum_i r_i = \chi(G)$. By a (r_1, \ldots, r_a)-partitioned coloring of G we mean a proper coloring of G of the form

$$\{\{x\}, L_{11}, L_{12}, \ldots, L_{1r_1}, L_{21}, L_{22}, \ldots, L_{2r_2}, \ldots, L_{a1}, L_{a2}, \ldots, L_{ar_a}\}.$$

Here $\{x\}$ is a singleton color class and each L_{ij} is a color class.
Mozhan’s Lemma

Lemma (Mozhan 1983)

Let G be a vertex critical graph. Let $a \geq 1$ and r_1, \ldots, r_a be such that $1 + \sum_i r_i = \chi(G)$. Of all (r_1, \ldots, r_a)-partitioned colorings of G pick one minimizing

$$\sum_{i=1}^{a} \left\| G \left[\bigcup_{j=1}^{r_i} L_{ij} \right] \right\| .$$

Remember that $\{x\}$ is a singleton color class in the coloring. Put $U_i := \bigcup_{j=1}^{r_i} L_{ij}$ and let $Z_i(x)$ be the component of x in $G[\{x\} \cup U_i]$. If $d_{Z_i(x)}(x) = r_i$, then $Z_i(x)$ is complete if $r_i \geq 3$ and $Z_i(x)$ is an odd cycle if $r_i = 2$.
• take a \(\left(\left\lfloor \frac{\Delta-1}{2} \right\rfloor, \left\lceil \frac{\Delta-1}{2} \right\rceil\right)\)-partitioned coloring minimizing the above function
The recoloring algorithm

- take a \((\lfloor \frac{\Delta-1}{2} \rfloor, \lceil \frac{\Delta-1}{2} \rceil)\)-partitioned coloring minimizing the above function
- prove that we may assume that \(x\) is a low vertex
The recoloring algorithm

- take a \((\lfloor \frac{\Delta-1}{2} \rfloor, \lceil \frac{\Delta-1}{2} \rceil)\)-partitioned coloring minimizing the above function
- prove that we may assume that \(x\) is a low vertex
- by Mozhan’s lemma, the component of \(x\) in each part induces a clique or an odd cycle
The recoloring algorithm

- swap x with a low vertex x_1 in the right part
The recoloring algorithm

- swap x with a low vertex x_1 in the right part
- swap x_1 with a low vertex x_2 in the left part
• swap x with a low vertex x_1 in the right part
• swap x_1 with a low vertex x_2 in the left part
• continue swapping back and forth until you wrap around
The recoloring algorithm

- swap x with a low vertex x_1 in the right part
- swap x_1 with a low vertex x_2 in the left part
- continue swapping back and forth until you wrap around
The recoloring algorithm

- swap \(x \) with a low vertex \(x_1 \) in the right part
- swap \(x_1 \) with a low vertex \(x_2 \) in the left part
- continue swapping back and forth until you wrap around
The recoloring algorithm

- swap x with a low vertex x_1 in the right part
- swap x_1 with a low vertex x_2 in the left part
- continue swapping back and forth until you wrap around
• use the fact that you wrapped around to show that there are many edges between the two cliques
use the fact that you wrapped around to show that there are many edges between the two cliques
we have now constructed the desired large "dense" subgraph
Generalizing maximum degree

Definition

For $0 \leq \epsilon \leq 1$, define $\Delta_\epsilon(G)$ as

$$\left\lfloor \max_{xy \in E(G)} (1 - \epsilon) \min\{d(x), d(y)\} + \epsilon \max\{d(x), d(y)\} \right\rfloor.$$
Generalizing maximum degree

Definition

For $0 \leq \varepsilon \leq 1$, define $\Delta_\varepsilon(G)$ as

$$
\left\lfloor \max_{xy \in E(G)} \left(1 - \varepsilon \right) \min\{d(x), d(y)\} + \varepsilon \max\{d(x), d(y)\} \right\rfloor.
$$

Note that $\Delta_1 = \Delta$, $\Delta_{\frac{1}{2}} = \left\lfloor \frac{\theta}{2} \right\rfloor$.
The generalized bound

Theorem (R. 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with
$\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.
The generalized bound

Theorem (R. 2010)

*For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.***

- the proof uses a recoloring algorithm similar to the above
The generalized bound

Theorem (R. 2010)

For every $0 < \epsilon \leq 1$, there exists t_{ϵ} such that every graph with $\Delta_{\epsilon} \geq t_{\epsilon}$ satisfies $\chi \leq \max\{\omega, \Delta_{\epsilon}\}$.

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ, the smallest t_{ϵ} that works
Improving Brooks’ theorem

Landon Rabern

A prison problem
Some background
The Ore-degree
Rephrasing the problem
Solving the rephrased problem
A spectrum of generalizations
Generalizing maximum degree
The generalized bound
The lower bound on t_{ϵ}
What about Δ_0?
Further improvements

The generalized bound

Theorem (R. 2010)

For every $0 < \epsilon \leq 1$, there exists t_{ϵ} such that every graph with $\Delta_{\epsilon} \geq t_{\epsilon}$ satisfies $\chi \leq \max\{\omega, \Delta_{\epsilon}\}$.

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ, the smallest t_{ϵ} that works
- that $t_1 = 3$ is smallest is Brooks’ theorem
The generalized bound

Theorem (R. 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ, the smallest t_ϵ that works
- that $t_1 = 3$ is smallest is Brooks’ theorem
- the graph O_5 shows that $t_\epsilon = 6$ is smallest for $\frac{1}{2} \leq \epsilon < 1$
The generalized bound

Theorem (R. 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ, the smallest t_ϵ that works
- that $t_1 = 3$ is smallest is Brooks’ theorem
- the graph O_5 shows that $t_\epsilon = 6$ is smallest for $\frac{1}{2} \leq \epsilon < 1$
- best known general bounds, $\frac{2}{\epsilon} + 1 \leq t_\epsilon \leq \frac{4}{\epsilon} + 2$
Improving Brooks' theorem

Landon Rabern

A prison problem
Some background
The Ore-degree
Rephrasing the problem
Solving the rephrased problem
A spectrum of generalizations
Generalizing maximum degree
The generalized bound
The lower bound on t_ϵ
What about Δ_0?
Further improvements

The lower bound on t_ϵ

Figure: The graph O_n.

K_{n-2}
The lower bound on t_ϵ

Figure: The graph O_n.

- $\chi(O_n) = n > \omega(O_n)$ and $\Delta(O_n) = \left\lceil \frac{n-1}{2} \right\rceil + n - 2$
Improving Brooks' theorem

Landon Rabern

A prison problem
Some background
The Ore-degree
Rephrasing the problem
Solving the rephrased problem
A spectrum of generalizations
Generalizing maximum degree
The generalized bound
The lower bound on t_ϵ
What about Δ_0?
Further improvements

The lower bound on t_ϵ

A spectrum of generalizations

Generalizing maximum degree
The generalized bound
The lower bound on t_ϵ
What about Δ_0?
Further improvements

• $\chi(O_n) = n > \omega(O_n)$ and $\Delta(O_n) = \left\lceil \frac{n-1}{2} \right\rceil + n - 2$

• $\mathcal{H}(O_n)$ is edgeless

Figure: The graph O_n.

K_{n-2}

$K_{\left\lceil \frac{n-1}{2} \right\rceil}$

$K_{\left\lfloor \frac{n-1}{2} \right\rfloor}$
The lower bound on t_ϵ

- $\chi(O_n) = n > \omega(O_n)$ and $\Delta(O_n) = \left\lceil \frac{n-1}{2} \right\rceil + n - 2$
- $\mathcal{H}(O_n)$ is edgeless
- computing Δ_ϵ gives $t_\epsilon \geq \frac{2}{\epsilon} + 1$
What about Δ_0?

- the above proofs only work for $\epsilon > 0$
What about Δ_0?

• the above proofs only work for $\epsilon > 0$
• what happens when $\epsilon = 0$?
What about Δ_0?

- the above proofs only work for $\epsilon > 0$
- what happens when $\epsilon = 0$?
- the parameter Δ_0 has already been investigated by Stacho under the name Δ_2
What about Δ_0?

- the above proofs only work for $\epsilon > 0$
- what happens when $\epsilon = 0$?
- the parameter Δ_0 has already been investigated by Stacho under the name Δ_2

Definition (Stacho 2001)

For a graph G define

$$\Delta_0(G) := \max_{xy \in E(G)} \min\{d(x), d(y)\}.$$
Facts about Δ_0

- greedy coloring (in any order) shows that every graph satisfies $\chi \leq \Delta_0 + 1$
Facts about Δ_0

- greedy coloring (in any order) shows that every graph satisfies $\chi \leq \Delta_0 + 1$
- for any fixed $t \geq 3$, the problem of determining whether or not $\chi(G) \leq \Delta_0(G)$ for graphs with $\Delta_0(G) = t$ is \textit{NP}-complete (Stacho 2001)
A tempting thought

There exists \(t \) such that every graph with \(\Delta_0 \geq t \) satisfies
\[
\chi \leq \max\{\omega, \Delta_0\}.
\]
A tempting thought

There exists t such that every graph with $\Delta_0 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_0\}$.

- since $t_\epsilon \geq \frac{2}{\epsilon} + 1$, we see that $t_\epsilon \to \infty$ as $\epsilon \to 0$
A tempting thought

There exists t such that every graph with $\Delta_0 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_0\}$.

- since $t_\epsilon \geq \frac{2}{\epsilon} + 1$, we see that $t_\epsilon \to \infty$ as $\epsilon \to 0$
- thus, t_0 does not exist and the tempting thought cannot hold
A tempting thought

There exists t such that every graph with $\Delta_0 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_0\}$.

- since $t_\varepsilon \geq \frac{2}{\varepsilon} + 1$, we see that $t_\varepsilon \to \infty$ as $\varepsilon \to 0$
- thus, t_0 does not exist and the tempting thought cannot hold
- there is a cute algorithmic way to see this assuming $P \neq NP$
A tempting thought

There exists \(t \) such that every graph with \(\Delta_0 \geq t \) satisfies
\[\chi \leq \max\{\omega, \Delta_0\} \]

- since \(t_\epsilon \geq \frac{2}{\epsilon} + 1 \), we see that \(t_\epsilon \rightarrow \infty \) as \(\epsilon \rightarrow 0 \)
- thus, \(t_0 \) does not exist and the tempting thought cannot hold
- there is a cute algorithmic way to see this assuming \(P \neq NP \)
- we use Lovász’s \(\vartheta \) parameter which can be approximated in polynomial time and has the property that
\[\omega(G) \leq \vartheta(G) \leq \chi(G) \]
A polynomial-time algorithm

- assume the tempting thought holds for some \(t \geq 3 \)
A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
- second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
- second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
- if $x \geq \Delta_0 + \frac{1}{2}$, then $\chi \geq \vartheta > \Delta_0$ and hence $\chi = \Delta_0 + 1$
A polynomial-time algorithm

• assume the tempting thought holds for some \(t \geq 3 \)
• take any arbitrary graph with \(\Delta_0 \geq t \)
• first, compute \(\Delta_0 \) in polynomial time
• second, compute \(x \) such that \(x - \frac{1}{2} < \vartheta < x + \frac{1}{2} \) in polynomial time
 • if \(x \geq \Delta_0 + \frac{1}{2} \), then \(\chi \geq \vartheta > \Delta_0 \) and hence \(\chi = \Delta_0 + 1 \)
 • if \(x < \Delta_0 + \frac{1}{2} \), then \(\omega \leq \vartheta < \Delta_0 + 1 \), and hence \(\omega \leq \Delta_0 \)
A polynomial-time algorithm

- assume the tempting thought holds for some \(t \geq 3 \)
- take any arbitrary graph with \(\Delta_0 \geq t \)
- first, compute \(\Delta_0 \) in polynomial time
- second, compute \(x \) such that \(x - \frac{1}{2} < \vartheta < x + \frac{1}{2} \) in polynomial time
 - if \(x \geq \Delta_0 + \frac{1}{2} \), then \(\chi \geq \vartheta > \Delta_0 \) and hence \(\chi = \Delta_0 + 1 \)
 - if \(x < \Delta_0 + \frac{1}{2} \), then \(\omega \leq \vartheta < \Delta_0 + 1 \), and hence \(\omega \leq \Delta_0 \)
- now, \(\chi \leq \max\{\omega, \Delta_0\} \leq \Delta_0 \)
A polynomial-time algorithm

• assume the tempting thought holds for some $t \geq 3$
• take any arbitrary graph with $\Delta_0 \geq t$
• first, compute Δ_0 in polynomial time
• second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
 • if $x \geq \Delta_0 + \frac{1}{2}$, then $\chi \geq \vartheta > \Delta_0$ and hence $\chi = \Delta_0 + 1$
 • if $x < \Delta_0 + \frac{1}{2}$, then $\omega \leq \vartheta < \Delta_0 + 1$, and hence $\omega \leq \Delta_0$
• now, $\chi \leq \max\{\omega, \Delta_0\} \leq \Delta_0$
• we just gave a polynomial time algorithm to determine whether or not $\chi \leq \Delta_0$ for graphs with $\Delta_0 \geq t$
A polynomial-time algorithm

- assume the tempting thought holds for some \(t \geq 3 \)
- take any arbitrary graph with \(\Delta_0 \geq t \)
- first, compute \(\Delta_0 \) in polynomial time
- second, compute \(x \) such that \(x - \frac{1}{2} < \vartheta < x + \frac{1}{2} \) in polynomial time
 - if \(x \geq \Delta_0 + \frac{1}{2} \), then \(\chi \geq \vartheta > \Delta_0 \) and hence \(\chi = \Delta_0 + 1 \)
 - if \(x < \Delta_0 + \frac{1}{2} \), then \(\omega \leq \vartheta < \Delta_0 + 1 \), and hence \(\omega \leq \Delta_0 \)
- now, \(\chi \leq \max\{\omega, \Delta_0\} \leq \Delta_0 \)
- we just gave a polynomial time algorithm to determine whether or not \(\chi \leq \Delta_0 \) for graphs with \(\Delta_0 \geq t \)
- this is impossible unless \(P=NP \)
What we can prove about Δ_0

Theorem (R. 2010)

Every graph with $\Delta \geq 3$ satisfies

$$\chi \leq \max \left\{ \omega, \Delta_0, \frac{5}{6}(\Delta + 1) \right\}.$$
What we can prove about Δ_0

Theorem (R. 2010)

Every graph with $\Delta \geq 3$ satisfies

$$
\chi \leq \max \left\{ \omega, \Delta_0, \frac{5}{6}(\Delta + 1) \right\}.
$$

- the proof uses a recoloring algorithm similar to the above
Improving Brooks’ theorem

Landon Rabern

A prison problem

Some background

The Ore-degree

Rephrasing the problem

Solving the rephrased problem

A spectrum of generalizations

Generalizing maximum degree

The generalized bound

The lower bound on t_ϵ

What about Δ_0?

Further improvements

What we can prove about Δ_0

Theorem (R. 2010)

Every graph with $\Delta \geq 3$ satisfies

$$\chi \leq \max \left\{ \omega, \Delta_0, \frac{5}{6}(\Delta + 1) \right\}.$$

- the proof uses a recoloring algorithm similar to the above
- actually, all the above results about Δ_ϵ follow from this result
In joint work with Kostochka and Stiebitz similar techniques were used to improve the bounds further. Highlights:
In joint work with Kostochka and Stiebitz similar techniques were used to improve the bounds further. Highlights:

Theorem (Kostochka, R. and Stiebitz 2010)

Every graph with $\theta \geq 8$, except O_5, satisfies $\chi \leq \max \{\omega, \left\lfloor \frac{\theta}{2} \right\rfloor\}$.
In joint work with Kostochka and Stiebitz similar techniques were used to improve the bounds further. Highlights:

Theorem (Kostochka, R. and Stiebitz 2010)

Every graph with \(\theta \geq 8 \), except \(O_5 \), satisfies \(\chi \leq \max \{ \omega, \left\lfloor \frac{\theta}{2} \right\rfloor \} \).

Theorem (Kostochka, R. and Stiebitz 2010)

Every graph satisfies

\[
\chi \leq \max \left\{ \omega, \Delta_0, \frac{3}{4}(\Delta + 2) \right\}.
\]
Conjecture

Every graph satisfies

\[\chi \leq \max \left\{ \omega, \Delta_0, \frac{2\Delta + 5}{3} \right\}. \]

The examples \(O_n \) above show that this would be tight.
Improving Brooks’ theorem

Landon Rabern

A prison problem

Some background

The Ore-degree

Rephrasing the problem

Solving the rephrased problem

A spectrum of generalizations

Further improvements

M. Grötschel, L. Lovász, and A. Schrijver.

H.A. Kierstead and A.V. Kostochka.

A.V. Kostochka, L. Rabern, and M. Stiebitz.
Graphs with chromatic number close to maximum degree. *Discrete Math*, Forthcoming.

B. Rabern.
Reformulation as a prison problem. *Private communication*.

L. Rabern.
An improvement on Brooks’ theorem. *Submitted*.

L. Rabern.

L. Rabern.

L. Stacho.

M. Stiebitz.