Chaotic Behavior in a Deterministic Model of Manufacturing

John J. BARTHOLDI, III

The Supply Chain & Logistics Institute
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205 USA

August 8, 2007
Imagine...

- A logistics system with tens of thousands of workers
- Operates at near optimality
- No management, no IT department, no industrial engineers, no consultants
Imagine...

- A logistics system with tens of thousands of workers
- Operates at near optimality
- No management, no IT department, no industrial engineers, no consultants
How should workers coordinate to share work?
“Bucket brigades”

Local operating rule

Work forward until someone takes your work; then go back and take work from a slower worker.
Bucket brigades
Bucket brigades
Bucket brigades
Bucket brigades
Bucket brigades
Bucket brigades
Behavior of bucket brigades

Theorem

Under bucket brigades, balance emerges spontaneously.

In other words, the line *balances itself* — and better than any engineering department could do it!
Some users of bucket brigades

Anderson Merchandisers (+25%)
Blockbuster Music (+27%)
CVS Drugstores, Inc. (+34%)
Dell Computer
Ford Parts Distribution Centers (+50%)
The Gap (+27%)

Harcourt-Brace
McGraw-Hill
Radio Shack
Readers Digest (+8%)
Wawa (+50%)
Walgreen’s
Order-picking in a warehouse
Assembling sandwiches
Assembling televisions

John J. BARTHOLDI, III
2-worker bucket brigades

Time until next completion:

\[t = \frac{1 - x}{v_2} \]

Distance travelled by worker 1 in that time:

\[v_1 t \]

Location of next hand-off:

\[f(x) = \frac{v_1}{v_2} (1 - x) \]
The dynamics function

\[f(x) = \left(\frac{v_1}{v_2} \right) (1 - x). \]
Convergence to fixed point

\[f(x) = \left(\frac{v_1}{v_2} \right) (1 - x) . \]
Convergence to fixed point

\[f(x) = \left(\frac{v_1}{v_2}\right)(1 - x). \]
Convergence to fixed point

\[f(x) = \left(\frac{v_1}{v_2} \right)(1 - x). \]
Convergence to fixed point

\[f(x) = \left(\frac{v_1}{v_2} \right) (1 - x). \]
Convergence to fixed point

\[f(x) = \left(\frac{v_1}{v_2}\right)(1 - x). \]
Convergence to fixed point

\[f(x) = \left(\frac{v_1}{v_2} \right) (1 - x). \]
Undesirable self-organization
Convergence and chaos
Deterministic chaos

\[x_{k+1} = f(x_k) \]

Definition

A map is **chaotic** iff there exists \(x_0 \) such that the orbit \(O(x_0) = \{x_0, x_1, \ldots\} \) is both dense and unstable in \([0, 1]\).
Chaotic dynamics

Worker 1 = \((1, 1/3) \)

Worker 2 = \((1, 1) \)
Chaotic dynamics
Chaotic dynamics
Chaotic dynamics
Chaotic dynamics
Sensitive dependence on initial conditions

\[x^{(n+1)} = 1 - 2x^{(n)} \mod 1 \]

There is no least-significant bit!

0.110100
Sensitive dependence on initial conditions

\[x^{(n+1)} = 1 - 2x^{(n)} \mod 1 \]

There is no least-significant bit!

0.110100
0.10100
0.10100?
Sensitive dependence on initial conditions

\[x^{(n+1)} = 1 - 2x^{(n)} \mod 1 \]

There is no least-significant bit!

\[
\begin{align*}
0.11010000 \\
0.101000? \\
0.0100? \\
0.0100? \\
\end{align*}
\]
Sensitive dependence on initial conditions

\[x^{(n+1)} = 1 - 2x^{(n)} \mod 1 \]

There is no least-significant bit!

0.110100
0.10100?
0.0100??
0.100???
Sensitive dependence on initial conditions

\[x^{(n+1)} = 1 - 2x^{(n)} \mod 1 \]

There is no least-significant bit!

\[
\begin{align*}
0.110100 & \quad ? \\
0.101000 & \quad ? \\
0.0100 & \quad ? \\
0.100 & \quad ? \\
0.0 & \quad ?
\end{align*}
\]
Sensitive dependence on initial conditions

\[x^{(n+1)} = 1 - 2x^{(n)} \mod 1 \]

There is no least-significant bit!

\[
\begin{array}{ccccccc}
0.1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0.1 & 0 & 1 & 0 & 0 & ? & ? \\
0.0 & 1 & 0 & 0 & ? & ? & ? \\
0.1 & 0 & 0 & ? & ? & ? & ? \\
0.0 & 0 & ? & ? & ? & ? & ? \\
\end{array}
\]
Sensitive dependence on initial conditions

\[x^{(n+1)} = 1 - 2x^{(n)} \mod 1 \]

There is no least-significant bit!

\[
\begin{align*}
0.1 & 1 0 1 0 0 0 \\
0.1 & 0 1 0 0 0 ? \\
0.0 & 1 0 0 ? ? ? \\
0.1 & 0 0 ? ? ? ? \\
0.0 & 0 ? ? ? ? ? \\
\vdots & \vdots
\end{align*}
\]
Symptoms of chaos

- Sensitive dependence on initial conditions
- Periodic orbits are unstable
- Dense orbits
- Cannot be reliably simulated
- Seemingly random behavior
Seemingly random start/intercompletion times

Cumulative Percentage vs. Intercompletion Time

John J. BARTHOLDI, III
www.warehouse-science.com
Strange attractors

John J. BARTHOldI, III www.warehouse-science.com
Variability

- Process variability
 - Fluctuations in processing time
 - Unforeseen outages
 - Setups
 - Worker availability
Variability

- Process variability
 - Fluctuations in processing time
 - Unforeseen outages
 - Setups
 - Worker availability

- Flow variability
 - Interarrival time of work
Variability

- Process variability
 - Fluctuations in processing time
 - Unforeseen outages
 - Setups
 - Worker availability

- Flow variability
 - Interarrival time of work

- Deterministic chaos
For more information

- Web page: www.isye.gatech.edu/~jjb
- E-mail: john.bartholdi@gatech.edu
- Post:

 Professor John J. BARTHOLDI, III
 Supply Chain & Logistics Institute
 School of Industrial and Systems Engineering
 Georgia Institute of Technology
 Atlanta, GA 30332-0205 USA