Overlap Number of Graphs

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

Joint work with
Daniel Cranston, Nitish Korula,
Timothy LeSaulnier, Kevin Milans,
Christopher Stocker, Jennifer Vandenbussche
Representation of Graphs

Idea Assign each vertex ν a set $f(\nu)$ so that $uv \in E(G)$ iff $f(u)$ and $f(\nu)$ satisfy a natural relation. Use sets $f(\nu)$ in a natural class.
Representation of Graphs

Idea Assign each vertex v a set $f(v)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ satisfy a natural relation. Use sets $f(v)$ in a natural class.

Def. intersection repn: $uv \in E(G) \iff f(u) \cap f(v) \neq \emptyset$

interval graph: each $f(v)$ is an interval (> 600 items)
Idea Assign each vertex v a set $f(v)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ satisfy a natural relation. Use sets $f(v)$ in a natural class.

Def. intersection repn: $uv \in E(G) \iff f(u) \cap f(v) \neq \emptyset$

interval graph: each $f(v)$ is an interval (> 600 items)

Def. Sets A and B overlap if they intersect and neither contains the other.

overlap repn: $uv \in E(G) \iff f(u)$ and $f(v)$ overlap

overlap graph: each $f(v)$ is an interval (< 50 items)
Representation of Graphs

Idea Assign each vertex v a set $f(v)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ satisfy a natural relation. Use sets $f(v)$ in a natural class.

Def. intersection repn: $uv \in E(G) \iff f(u) \cap f(v) \neq \emptyset$
interval graph: each $f(v)$ is an interval (> 600 items)

Def. Sets A and B overlap if they intersect and neither contains the other.
overlap repn: $uv \in E(G) \iff f(u)$ and $f(v)$ overlap
overlap graph: each $f(v)$ is an interval (< 50 items)

Def. finite representation: each $f(v)$ is finite
size of repn: $|f| = \left| \bigcup_{v \in V(G)} f(v) \right|$
inters. number $\theta_1(G) = \min$ size of finite inters. repn
overlap number $\varphi(G) = \min$ size of finite overlap repn
Overlap vs. Intersection

Thm. (Erdős–Goodman–Pósa [1966]) $\theta_1(G)$ is the min size of a decomposition of G into complete subgraphs.

Cor. $\theta_1(G) = |E(G)|$ when G has no triangles.
Overlap vs. Intersection

Thm. (Erdős–Goodman–Pósa [1966]) $\theta_1(G)$ is the min size of a decomposition of G into complete subgraphs.

Cor. $\theta_1(G) = |E(G)|$ when G has no triangles.

Ex. $\theta_1(P_n) = n - 1$, but $\phi(P_n) = n$ (Rosgen).

1 12 23 34 4
Overlap vs. Intersection

Thm. (Erdős–Goodman–Pósa [1966]) \(\theta_1(G) \) is the min size of a decomposition of \(G \) into complete subgraphs.

Cor. \(\theta_1(G) = |E(G)| \) when \(G \) has no triangles.

Ex. \(\theta_1(P_n) = n - 1 \), but \(\varphi(P_n) = n \) (Rosgen).
Overlap vs. Intersection

Thm. (Erdős–Goodman–Pósa [1966]) $\theta_1(G)$ is the min size of a decomposition of G into complete subgraphs.

Cor. $\theta_1(G) = |E(G)|$ when G has no triangles.

Ex. $\theta_1(P_n) = n - 1$, but $\phi(P_n) = n$ (Rosgen).

Ex. $\theta_1(K_{r,r}) = r^2$, but $\phi(K_{r,r}) = 3$.
Overlap vs. Intersection

Thm. (Erdős–Goodman–Pósa [1966]) \(\theta_1(G) \) is the min size of a decomposition of \(G \) into complete subgraphs.

Cor. \(\theta_1(G) = |E(G)| \) when \(G \) has no triangles.

Ex. \(\theta_1(P_n) = n - 1 \), but \(\phi(P_n) = n \) (Rosgen).

\[
\begin{align*}
1 & \quad 12 & \quad 23 & \quad 34 & \quad 4 \\
01 & \quad 12 & \quad 23 & \quad 34 & \quad 0123
\end{align*}
\]

Ex. \(\theta_1(K_{r,r}) = r^2 \), but \(\phi(K_{r,r}) = 3 \).

\[
\begin{align*}
12 & \quad 12 & \quad 12 & \quad 12 \\
23 & \quad 23 & \quad 23 & \quad 23 \\
\end{align*}
\]
Results \((n\text{-vertex graphs})\)

Rosgen (masters’ thesis)

Caterpillars: \(\varphi(G) = \) order of the longest path.
Trees: \(\varphi(G) \leq n + 1.\)
Chordal Graphs: \(\varphi(G) \leq 2n.\)
Planar Graphs: \(\varphi(G) \leq (10/3)n - 6.\)
All Graphs: \(\varphi(G) \leq \lfloor n^2/4 \rfloor + n.\)
Results (n-vertex graphs)

Rosgen (masters’ thesis)

Caterpillars: $\phi(G) =$ order of the longest path.
Trees: $\phi(G) \leq n + 1$.
Chordal Graphs: $\phi(G) \leq 2n$.
Planar Graphs: $\phi(G) \leq (10/3)n - 6$.
All Graphs: $\phi(G) \leq \lceil n^2/4 \rceil + n$.

New Results

Trees: linear algorithm, $\phi(G) =$ order of the skeleton.
Planar Graphs: $\phi(G) \leq 2n - 5$ for $n \geq 5$, sharp.
All Graphs: $\phi(G) \leq \frac{n^2}{4} - \frac{n}{2} - 1$ (large even n), sharp.
Edge Bounds: $\phi(G) \leq |E(G)| - 1$ (sharp for triangle-free connected graphs without star-cutsets).
Results (n-vertex graphs)

Rosgen (masters’ thesis)
Caterpillars: $\varphi(G) = \text{order of the longest path.}$
Trees: $\varphi(G) \leq n + 1.$
Chordal Graphs: $\varphi(G) \leq 2n.$
Planar Graphs: $\varphi(G) \leq (10/3)n - 6.$
All Graphs: $\varphi(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor + n.$

New Results
Trees: linear algorithm, $\varphi(G) = \text{order of the skeleton.}$
Planar Graphs: $\varphi(G) \leq 2n - 5$ for $n \geq 5$, sharp.
All Graphs: $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} - 1$ (large even n), sharp.
Edge Bounds: $\varphi(G) \leq |E(G)| - 1$ (sharp for triangle-free connected graphs without star-cutsets).
Def. caterpillar: tree T such that $T - \{\text{leaves}\}$ is a path.

Spine $\langle v_1, \ldots, v_l \rangle$: longest path.
Def. caterpillar: tree T such that $T - \{\text{leaves}\}$ is a path.
spine $\langle \nu_1, \ldots, \nu_l \rangle$: longest path.

Thm. (Rosgen) $\phi(T) = \# \text{ vertices on spine.}$
Caterpillars

Def. caterpillar: tree T such that $T - \{\text{leaves}\}$ is a path. spine $\langle v_1, \ldots, v_l \rangle$: longest path.

Thm. (Rosgen) $\phi(T) = \# \text{ vertices on spine.}$

Pf. Let $f(v_i) = \{i, i + 1\}$ for $1 \leq i \leq l - 1.$
Def. caterpillar: tree T such that $T - \{\text{leaves}\}$ is a path. spine $\langle \nu_1, \ldots, \nu_l \rangle$: longest path.

Thm. (Rosgen) $\varphi(T) = \# \text{ vertices on spine}$.

Pf. Let $f(\nu_i) = \{i, i+1\}$ for $1 \leq i \leq l - 1$. Let $f(x) = \{1, \ldots, i\}$ when x is a leaf neighbor of ν_i.

Caterpillars

Def. caterpillar: tree T such that $T - \{\text{leaves}\}$ is a path.
spine $\langle v_1, \ldots, v_l \rangle$: longest path.

Thm. (Rosgen) $\phi(T) = \# \text{ vertices on spine}.$

Pf. Let $f(v_i) = \{i, i + 1\}$ for $1 \leq i \leq l - 1$. Let $f(x) = \{1, \ldots, i\}$ when x is a leaf neighbor of v_i. \blacklozenge

- $f(v_i)$ is minimal among all sets containing i.
Def. derived tree T': form by deleting every leaf of T.

Skeleton of T: keep the derived tree T' plus one leaf neighbor of each leaf of T'.
Skeletons of Trees

Def. derived tree T': form by deleting every leaf of T. skeleton of T: keep the derived tree T' plus one leaf neighbor of each leaf of T'.
Skeletons of Trees

Def. derived tree T': form by deleting every leaf of T. skeleton of T: keep the derived tree T' plus one leaf neighbor of each leaf of T'.

Thm. $\varphi(T) = \# \text{ vertices of the skeleton of } T$.
Skeletions of Trees

Def. derived tree T': form by deleting every leaf of T. skeleton of T: keep the derived tree T' plus one leaf neighbor of each leaf of T'.

Thm. $\varphi(T) = \#$ vertices of the skeleton of T.

Upper Bound: Initial caterpillar T_0.
Skeletpons of Trees

Def. derived tree T': form by deleting every leaf of T.

skeleton of T: keep the derived tree T' plus one leaf neighbor of each leaf of T'.

Thm. $\varphi(T) = \# \text{ vertices of the skeleton of } T$.

Upper Bound: Initial caterpillar T_0.
Add: caterpillar T_1, using key element i at v_i.
Skeletions of Trees

Def. derived tree T': form by deleting every leaf of T.

skeleton of T: keep the derived tree T' plus one leaf neighbor of each leaf of T'.

Thm. $\varphi(T) = \# \text{ vertices of the skeleton of } T$.

Upper Bound: Initial caterpillar T_0.

Add: caterpillar T_1, using key element i at v_i.

Update: Add the new labels to all old sets containing i.
Sketch of Lower Bound

Suffices to prove that if T is a skeleton, then $\varphi(T) = n$.

Idea Induct on n. Given overlap repn f for a skeleton T, find leaf x [or leaf x and nbr v] whose deletion yields a skeleton T' for which $f - \{a\}$ [or $f - \{a, b\}$] is an overlap repn. This needs $|V(T')|$ elements, so $|f| \geq n$.
Sketch of Lower Bound

Suffices to prove that if T is a skeleton, then $\varphi(T) = n$.

Idea Induct on n. Given overlap repn f for a skeleton T, find leaf x [or leaf x and nbr v] whose deletion yields a skeleton T' for which $f - \{a\}$ [or $f - \{a, b\}$] is an overlap repn. This needs $|V(T')|$ elements, so $|f| \geq n$.

Lem. If f is overlap repn of G, then $f - S$ is an overlap repn of G iff S does not contain $f(u) \cap f(v)$ or $f(u) - f(v)$ or $f(v) - f(u)$ for any edge uv.
Sketch of Lower Bound

Suffices to prove that if T is a skeleton, then $\varphi(T) = n$.

Idea Induct on n. Given overlap repn f for a skeleton T, find leaf x [or leaf x and nbr v] whose deletion yields a skeleton T' for which $f - \{a\}$ [or $f - \{a, b\}$] is an overlap repn. This needs $|V(T')|$ elements, so $|f| \geq n$.

Lem. If f is overlap repn of G, then $f - S$ is an overlap repn of G iff S does not contain $f(u) \cap f(v)$ or $f(u) - f(v)$ or $f(v) - f(u)$ for any edge uv.

Def. A set S is f-uniform if every $f(v) \cap S$ is S or \varnothing. [Proper subsets of an f-uniform set can be deleted!]
Sketch of Lower Bound

Suffices to prove that if T is a skeleton, then $\phi(T) = n$.

Idea Induct on n. Given overlap repn f for a skeleton T, find leaf x [or leaf x and nbr v] whose deletion yields a skeleton T' for which $f - \{a\}$ [or $f - \{a, b\}$] is an overlap repn. This needs $|V(T')|$ elements, so $|f| \geq n$.

Lem. If f is overlap repn of G, then $f - S$ is an overlap repn of G iff S does not contain $f(u) \cap f(v)$ or $f(u) - f(v)$ or $f(v) - f(u)$ for any edge uv.

Def. A set S is f-uniform if every $f(v) \cap S$ is S or \emptyset. [Proper subsets of an f-uniform set can be deleted!]

Lem. If f is overlap repn of G, and $N(v)$ is independent and contains no leaves, and $\{a, b\}$ is f-uniform except at v, then $f - \{a\}$ or $f - \{b\}$ is an overlap repn of G.
Sketch of Lower Bound, continued

Lem. If f is overlap repn of G, and $N(v)$ is independent and contains no leaves, and \{a, b\} is f-uniform except at v, then $f - \{a\}$ or $f - \{b\}$ is an overlap repn of G.
Sketch of Lower Bound, continued

Lem. If \(f \) is overlap repn of \(G \), and \(N(\nu) \) is independent and contains no leaves, and \(\{a, b\} \) is \(f \)-uniform except at \(\nu \), then \(f - \{a\} \) or \(f - \{b\} \) is an overlap repn of \(G \).

Def. \(x \) is minimal if \(f(x) \) contains no other \(f(\nu) \). Leaf \(x \) is doubly minimal if \(x \) and nbr \(\nu \) both minimal.

Find a doubly-minimal leaf \(x \).
Sketch of Lower Bound, continued

Lem. If \(f \) is overlap repn of \(G \), and \(N(\nu) \) is independent and contains no leaves, and \(\{a, b\} \) is \(f \)-uniform except at \(\nu \), then \(f - \{a\} \) or \(f - \{b\} \) is an overlap repn of \(G \).

Def. \(x \) is minimal if \(f(x) \) contains no other \(f(\nu) \).
Leaf \(x \) is doubly minimal if \(x \) and nbr \(\nu \) both minimal.

Find a doubly-minimal leaf \(x \).

Case 1: \(d(u) = 2 \). \(G \) is a skeleton. Choose \(a, b \in f(x) \).
\(x \) minimal \(\Rightarrow \) \(f(x) \) is uniform except at \(\nu \).
Lemma makes \(f - \{a\} \) or \(f - \{b\} \) an overlap repn of \(G \).
Sketch of Lower Bound, continued

Lem. If f is overlap repn of G, and $N(v)$ is independent and contains no leaves, and $\{a, b\}$ is f-uniform except at v, then $f - \{a\}$ or $f - \{b\}$ is an overlap repn of G.

Def. x is minimal if $f(x)$ contains no other $f(v)$. Leaf x is doubly minimal if x and nbr v both minimal.

Find a doubly-minimal leaf x.

Case 2: $d(u) > 2$. $G - v$ is a skeleton. Show that $f - \{a, b\}$ restricts to an overlap repn of $G - v$, where $a \in f(x) - f(v)$ and $b \in f(x) \cap f(v)$.
A Tool for Upper Bounds

Def. A pure overlap representation is an overlap repn with no assigned set containing another. The pure overlap number \(\Phi(G) \) is the min size of such a repn.
Def. A pure overlap representation is an overlap repn with no assigned set containing another. The pure overlap number $\Phi(G)$ is the min size of such a repn.

Lem. If G decomposes into complete Q_1, \ldots, Q_t of order at most k, and $\delta(G) \geq k$, then $\varphi(G) \leq \Phi(G) \leq t$.
A Tool for Upper Bounds

Def. A pure overlap representation is an overlap repn with no assigned set containing another. The pure overlap number $\Phi(G)$ is the min size of such a repn.

Lem. If G decomposes into complete Q_1, \ldots, Q_t of order at most k, and $\delta(G) \geq k$, then $\varphi(G) \leq \Phi(G) \leq t$.

Pf. Let $f(\nu) = \{ q_i : \nu \in Q_i \}$. $uv \in E(G) \iff$ both lie in some $Q_i \iff f(u) \cap f(v) \neq \emptyset$.
A Tool for Upper Bounds

Def. A pure overlap representation is an overlap repn with no assigned set containing another. The pure overlap number $\Phi(G)$ is the min size of such a repn.

Lem. If G decomposes into complete Q_1, \ldots, Q_t of order at most k, and $\delta(G) \geq k$, then $\varphi(G) \leq \Phi(G) \leq t$.

Pf. Let $f(\nu) = \{ q_i : \nu \in Q_i \}$.

$uv \in E(G) \iff$ both lie in some $Q_i \iff f(u) \cap f(\nu) \neq \emptyset$.

Decomposition $\Rightarrow |f(u) \cap f(\nu)| \leq 1$.

$\delta(G) \geq k \Rightarrow |f(\nu)| \geq 2 \Rightarrow$ no containments. □
A Tool for Upper Bounds

Def. A pure overlap representation is an overlap repn with no assigned set containing another. The pure overlap number $\Phi(G)$ is the min size of such a repn.

Lem. If G decomposes into complete Q_1, \ldots, Q_t of order at most k, and $\delta(G) \geq k$, then $\varphi(G) \leq \Phi(G) \leq t$.

Pf. Let $f(\nu) = \{ q_i : \nu \in Q_i \}$. $uv \in E(G) \iff$ both lie in some $Q_i \iff f(u) \cap f(\nu) \neq \emptyset$.

Decomposition $\Rightarrow |f(u) \cap f(\nu)| \leq 1$.

$\delta(G) \geq k \Rightarrow |f(\nu)| \geq 2 \Rightarrow$ no containments.

Cor. $\delta(G) \geq 2 \Rightarrow \varphi(G) \leq \Phi(G) \leq |E(G)|$.

A Tool for Upper Bounds

Def. A pure overlap representation is an overlap repn with no assigned set containing another. The pure overlap number $\Phi(G)$ is the min size of such a repn.

Lem. If G decomposes into complete Q_1, \ldots, Q_t of order at most k, and $\delta(G) \geq k$, then $\varphi(G) \leq \Phi(G) \leq t$.

Pf. Let $f(\nu) = \{q_i : \nu \in Q_i\}$. $uv \in E(G) \iff$ both lie in some $Q_i \iff f(u) \cap f(\nu) \neq \emptyset$. Decomposition $\Rightarrow |f(u) \cap f(\nu)| \leq 1.$

For $\delta(G) \geq k \Rightarrow |f(\nu)| \geq 2 \Rightarrow$ no containments.

Cor. $\delta(G) \geq 2 \Rightarrow \varphi(G) \leq \Phi(G) \leq |E(G)|$.

Lem. If $d(\nu) \leq 2$, then $\Phi(G) \leq \Phi(G - \nu) + 2$.

Pf. For $d(\nu) = 2$, let $f(\nu) = \{a, b\}$, add each to one nbr.
Upper Bounds for Planar Graphs

Lem. Every n-vertex planar graph, with $n \geq 3$, decomposes into at most $2n - 4$ edges and triangles.
Lem. Every n-vertex planar graph, with $n \geq 3$, decomposes into at most $2n - 4$ edges and triangles.

Pf. Induct on \# facial triangles. If none, $|E(G)| \leq 2n - 4$. Otherwise, let $[x, y, z]$ be a facial triangle. Form G'.
Upper Bounds for Planar Graphs

Lem. Every n-vertex planar graph, with $n \geq 3$, decomposes into at most $2n - 4$ edges and triangles.

Pf. Induct on \# facial triangles. If none, $|E(G)| \leq 2n - 4$. Otherwise, let $[x, y, z]$ be a facial triangle. Form G'.

G' decomposes into $2n - 2$ pieces, using vx, vy, vz. Replace with $[x, y, z]$ to decompose G into $2n - 4$.

\[\begin{array}{c}
\text{G} \\
\begin{array}{c}
x \\
y \\
z
\end{array}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{G'} \\
\begin{array}{c}
x \\
v \\
y \\
z
\end{array}
\end{array} \]
Upper Bounds for Planar Graphs

Lem. Every n-vertex planar graph, with $n \geq 3$, decomposes into at most $2n - 4$ edges and triangles.

Pf. Induct on \# facial triangles. If none, $|E(G)| \leq 2n - 4$. Otherwise, let $[x, y, z]$ be a facial triangle. Form G'.

G' decomposes into $2n - 2$ pieces, using vx, vy, vz. Replace with $[x, y, z]$ to decompose G into $2n - 4$.

Cor. If G is planar and $\delta(G) \geq 3$, then $\Phi(G) \leq 2n - 4$.

\[
\begin{align*}
\text{G} & \quad \rightarrow \quad \text{G}' \\
\text{z} & \quad \text{x} \quad \text{y} \\
\text{z} & \quad \text{x} \quad \text{y} \\
\end{align*}
\]
Upper Bounds for Planar Graphs

Lem. Every \(n \)-vertex planar graph, with \(n \geq 3 \), decomposes into at most \(2n - 4 \) edges and triangles.

Pf. Induct on \# facial triangles. If none, \(|E(G)| \leq 2n - 4 \). Otherwise, let \([x, y, z]\) be a facial triangle. Form \(G'\).

\[G \rightarrow G' \]

\(G' \) decomposes into \(2n - 2 \) pieces, using \(vx, vy, vz \). Replace with \([x, y, z]\) to decompose \(G \) into \(2n - 4 \).

Cor. If \(G \) is planar and \(\delta(G) \geq 3 \), then \(\Phi(G) \leq 2n - 4 \).

Cor. If \(G \) is planar and not \(K_{1,n-1} \), then \(\Phi(G) \leq 2n - 4 \).
The Extremal Result for Planar Graphs

Thm. (much more effort, not yet fully written)
For planar G with n vertices, $\varphi(G) \leq 2n - 5$ (if $n \geq 5$).
The Extremal Result for Planar Graphs

Thm. (much more effort, not yet fully written)
For planar G with n vertices, $\varphi(G) \leq 2n - 5$ (if $n \geq 5$).

The theorem is sharp when $4 \mid n$, as shown by $P_k \Box C_4$.
The Extremal Result for Planar Graphs

Thm. (much more effort, not yet fully written) For planar G with n vertices, $\varphi(G) \leq 2n - 5$ (if $n \geq 5$).

The theorem is sharp when $4 \mid n$, as shown by $P_k \square C_4$.

Thm. If G is triangle-free and connected and has no star-cutset, then $\varphi(G) = |E(G)| - 1$.

Def. A **star-cutset** of a graph G is a separating set S such that $G[S]$ has a spanning star (some vertex of S is adjacent to the rest of S).
Upper Bound Using $|E(G)|$

Thm. If $\delta(G) \geq 2$ and $n \geq 4$, then $\varphi(G) \leq |E(G)| - 1$.
Upper Bound Using $|E(G)|$

Thm. If $\delta(G) \geq 2$ and $n \geq 4$, then $\varphi(G) \leq |E(G)| - 1$.

Pf. Fix an edge uv. Define f using an element for each edge other than uv.
For $w \notin \{u, v\}$, let $f(w) = \{ e \in E(G) : w \in e \}$.
For $w \in \{u, v\}$, let $f(w) = \{ e \in E(G) : w \notin e \}$.
Upper Bound Using $|E(G)|$

Thm. If $\delta(G) \geq 2$ and $n \geq 4$, then $\varphi(G) \leq |E(G)| - 1$.

Pf. Fix an edge uv. Define f using an element for each edge other than uv.
For $w \notin \{u, v\}$, let $f(w) = \{e \in E(G) : w \in e\}$.
For $w \in \{u, v\}$, let $f(w) = \{e \in E(G) : w \notin e\}$.

For $w \notin \{u, v\}$, f restricts to a pure overlap repn, since $\delta(G) \geq 2$ prohibits containments. Also, $f(u)$ and $f(v)$ overlap the sets for their nbrs (except in $K_2 \vee \overline{K}_{n-2}$).
Finally, $f(u)$ contains the labels for all edges incident to its nonneighbors.
Lower Bound Lemmas

\textbf{Lem.} If \(x\) and \(y\) are adjacent to each other but not to \(v\), then \(f(v)\) contains both or neither of \(\{f(x), f(y)\}\).
Lem. If x and y are adjacent to each other but not to v, then $f(v)$ contains both or neither of $\{f(x), f(y)\}$.

Pf. $f(v) \supseteq f(x) \Rightarrow f(y) \not\supseteq f(v)$.

$xy \in E(G) \Rightarrow f(y)$ intersects $f(x)$ and hence also $f(v)$.

$\therefore f(y) \subseteq f(v)$ to prevent $yv \in E(G)$.

\[v \bullet \quad x \bullet \longrightarrow \bullet \ y \]
Lower Bound Lemmas

Lem. If \(x \) and \(y \) are adjacent to each other but not to \(v \), then \(f(v) \) contains both or neither of \(\{f(x), f(y)\} \).

Pf. \(f(v) \supseteq f(x) \Rightarrow f(y) \nsubseteq f(v) \).
\(xy \in E(G) \Rightarrow f(y) \) intersects \(f(x) \) and hence also \(f(v) \).
\(\therefore f(y) \subseteq f(v) \) to prevent \(yv \in E(G) \).

\[
\begin{array}{c}
v \bullet \\
\end{array} \quad \begin{array}{c}
x \bullet \quad y \\
\end{array}
\]

Lem. If \(u \) and \(v \) are non-minimal for an overlap repn \(f \) of a connected \(G \) without star-cutsets, then \(uv \in E(G) \).
Lower Bound Lemmas

Lem. If \(x \) and \(y \) are adjacent to each other but not to \(v \), then \(f(v) \) contains both or neither of \(\{f(x), f(y)\} \).

Pf. \(f(v) \supset f(x) \Rightarrow f(y) \not\supset f(v) \).
\(xy \in E(G) \Rightarrow f(y) \) intersects \(f(x) \) and hence also \(f(v) \).
\(\therefore f(y) \subseteq f(v) \) to prevent \(yv \in E(G) \).

\[
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array}
\]

Lem. If \(u \) and \(v \) are non-minimal for an overlap repn \(f \) of a connected \(G \) without star-cutsets, then \(uv \in E(G) \).

Pf. \(uv \notin E(G) \Rightarrow v \in V(G) - N[u] \).
No star-cutset \(\Rightarrow G - N[u] \) connected.
\(u \) non-minimal \(\Rightarrow f(u) \supset f(v) \). Similarly, \(f(v) \supset f(u) \).

\[
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array}
\]
The Lower Bound

Thm. If G is triangle-free, connected, and without star-cutsets, then $\varphi(G) = |E(G)| - 1$.
The Lower Bound

Thm. If G is triangle-free, connected, and without star-cutsets, then $\varphi(G) = |E(G)| - 1$.

Pf. Triangle-free \Rightarrow at most two non-minimal vertices.
The Lower Bound

Thm. If \(G \) is triangle-free, connected, and without star-cutsets, then \(\varphi(G) = |E(G)| - 1 \).

Pf. Triangle-free \(\Rightarrow \) at most two non-minimal vertices.

Case 0: none. \(f \) is pure overlap repn \(\Rightarrow \) \(|f| \geq |E(G)|\).
The Lower Bound

Thm. If G is triangle-free, connected, and without star-cutsets, then $\varphi(G) = |E(G)| - 1$.

Pf. Triangle-free \Rightarrow at most two non-minimal vertices.

Case 0: none. f is pure overlap repn $\Rightarrow |f| \geq |E(G)|$.

Case 1: one (u). f is pure overlap repn on $G - u$.

∴ each label appears at most twice (triangle-free).

∴ f has a label for each edge of $G - u$.
The Lower Bound

Thm. If G is triangle-free, connected, and without star-cutsets, then $\varphi(G) = |E(G)| - 1$.

Pf. Triangle-free \Rightarrow at most two non-minimal vertices.

Case 0: none. f is pure overlap repn \Rightarrow $|f| \geq |E(G)|$.

Case 1: one (u). f is pure overlap repn on $G - u$.

.\therefore each label appears at most twice (triangle-free).

.\therefore f has a label for each edge of $G - u$.

These labels are used for vertices outside $N(u)$ (tri-free) and hence lie in $f(u)$, since $f(u)$ is nonminimal.

.\therefore each $w \in N(u)$ needs an additional label not in $f(u)$.

.\therefore $|f| \geq |E(G)|$.
The Lower Bound

Thm. If G is triangle-free, connected, and without star-cutsets, then $\varphi(G) = |E(G)| - 1$.

Pf. Triangle-free \Rightarrow at most two non-minimal vertices.

Case 0: none. f is pure overlap repn $\Rightarrow |f| \geq |E(G)|$.

Case 1: one (u). f is pure overlap repn on $G - u$.

1. each label appears at most twice (triangle-free).
2. f has a label for each edge of $G - u$.

These labels are used for vertices outside $N(u)$ (tri-free) and hence lie in $f(u)$, since $f(u)$ is nonminimal.

1. each $w \in N(u)$ needs an additional label not in $f(u)$.
2. $|f| \geq |E(G)|$.

Case 2: two. This case is similar; one element can be saved. The configuration of the upper bound is forced.
Cor. If G is the graph obtained by deleting a perfect matching from $K_{n/2,n/2}$, then $\varphi(G) = \frac{n^2}{4} - \frac{n}{2} - 1$.
Cor. If G is the graph obtained by deleting a perfect matching from $K_{n/2,n/2}$, then $\varphi(G) = \frac{n^2}{4} - \frac{n}{2} - 1$.

Pf. G is triangle-free, connected, and has no star-cutset, so the theorem states that $\varphi(G) = |E(G)| - 1$. ■
Cor. If \(G \) is the graph obtained by deleting a perfect matching from \(K_{n/2,n/2} \), then \(\varphi(G) = \frac{n^2}{4} - \frac{n}{2} - 1 \).

Pf. \(G \) is triangle-free, connected, and has no star-cutset, so the theorem states that \(\varphi(G) = |E(G)| - 1 \).

Upper bound: Rosgen observed that \(\varphi(G) \leq \frac{n^2}{4} + n \).
Cor. If G is the graph obtained by deleting a perfect matching from $K_{n/2,n/2}$, then $\varphi(G) = \frac{n^2}{4} - \frac{n}{2} - 1$.

Pf. G is triangle-free, connected, and has no star-cutset, so the theorem states that $\varphi(G) = |E(G)| - 1$.

Upper bound: Rosgen observed that $\varphi(G) \leq \frac{n^2}{4} + n$.

Improvement: $\varphi(G) \leq \frac{n^2}{4}$ using Erdős–Goodman–Pósa decomposition of G into $\leq \frac{n^2}{4}$ edges and triangles.
Cor. If G is the graph obtained by deleting a perfect matching from $K_{n/2,n/2}$, then $\varphi(G) = \frac{n^2}{4} - \frac{n}{2} - 1$.

Pf. G is triangle-free, connected, and has no star-cutset, so the theorem states that $\varphi(G) = |E(G)| - 1$.

Upper bound: Rosgen observed that $\varphi(G) \leq \frac{n^2}{4} + n$.

Improvement: $\varphi(G) \leq \frac{n^2}{4}$ using Erdős–Goodman–Pósa decomposition of G into $\leq \frac{n^2}{4}$ edges and triangles.

Better: $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} + 4$ except small n (exclude leaves, triangles, nonbipartite, then reduce).
Cor. If G is the graph obtained by deleting a perfect matching from $K_{n/2,n/2}$, then $\varphi(G) = \frac{n^2}{4} - \frac{n}{2} - 1$.

Pf. G is triangle-free, connected, and has no star-cutset, so the theorem states that $\varphi(G) = |E(G)| - 1$.

Upper bound: Rosgen observed that $\varphi(G) \leq \frac{n^2}{4} + n$.

Improvement: $\varphi(G) \leq \frac{n^2}{4}$ using Erdős–Goodman–Pósa decomposition of G into $\leq \frac{n^2}{4}$ edges and triangles.

Better: $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} + 4$ except small n (exclude leaves, triangles, nonbipartite, then reduce).

Better still: $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} - 1$ for large enough even n. That is, the construction above is extremal (much more work, not yet all written down).
Sketch of the Better bound

Thm. \(\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} + 4 \) except for small \(n \).
Sketch of the Better bound

Thm. \(\phi(G) \leq \frac{n^2}{4} - \frac{n}{2} + 4 \) except for small \(n \).

Pf. If \(d(v) \leq 1 \), then \(\phi(G) \leq \phi(G - v) + 2 \).
Sketch of the Better bound

Thm. $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} + 4$ except for small n.

Pf. If $d(\nu) \leq 1$, then $\varphi(G) \leq \varphi(G - \nu) + 2$.

If G has a triangle uvw, use $\Phi(G - \{u, \nu, w\}) \leq \frac{(n-3)^2}{4}$. Add labels $f(u) = 12$, $f(\nu) = 23$, $f(w) = 31$. For other x, give a label to x and to $N(x) \cap \{u, \nu, w\}$.

$\frac{(n-3)^2}{4} + 3 + (n - 3) \leq \frac{n^2}{4} - \frac{n}{2} + 3$.
Sketch of the Better bound

Thm. \(\phi(G) \leq \frac{n^2}{4} - \frac{n}{2} + 4 \) except for small \(n \).

Pf. If \(d(\nu) \leq 1 \), then \(\phi(G) \leq \phi(G - \nu) + 2 \).

If \(G \) has a triangle \(uvw \), use \(\Phi(G - \{u, \nu, w\}) \leq \frac{(n-3)^2}{4} \).

Add labels \(f(u) = 12, f(\nu) = 23, f(w) = 31 \).

For other \(x \), give a label to \(x \) and to \(N(x) \cap \{u, \nu, w\} \).

\[\frac{(n-3)^2}{4} + 3 + (n - 3) \leq \frac{n^2}{4} - \frac{n}{2} + 3. \]

If \(G \) is triangle-free nonbipartite, \(|E(G)| \leq \frac{n^2}{4} - \frac{n}{2} + 4 \).

Also \(\delta(G) \geq 2 \); use \(\Phi(G) \leq |E(G)| \).
Sketch of the Better bound

Thm. \(\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} + 4 \) except for small \(n \).

Pf. If \(d(\nu) \leq 1 \), then \(\varphi(G) \leq \varphi(G - \nu) + 2 \).

If \(G \) has a triangle \(uvw \), use \(\Phi(G - \{u, \nu, w\}) \leq \frac{(n-3)^2}{4} \).

Add labels \(f(u) = 12, f(\nu) = 23, f(w) = 31 \).

For other \(x \), give a label to \(x \) and to \(N(x) \cap \{u, \nu, w\} \).

\[\frac{(n-3)^2}{4} + 3 + (n - 3) \leq \frac{n^2}{4} - \frac{n}{2} + 3. \]

If \(G \) is triangle-free nonbipartite, \(|E(G)| \leq \frac{n^2}{4} - \frac{n}{2} + 4 \).

Also \(\delta(G) \geq 2 \); use \(\Phi(G) \leq |E(G)| \).

If \(G \) is bipartite with two vertices having the same neighborhood, then \(\varphi(G) \leq \frac{(n-1)^2}{4} - \frac{n-1}{2} + 4 \).
Sketch of the Better bound

Thm. \(\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} + 4 \) except for small \(n \).

Pf. If \(d(\nu) \leq 1 \), then \(\varphi(G) \leq \varphi(G - \nu) + 2 \).

If \(G \) has a triangle \(u \nu w \), use \(\Phi(G - \{u, \nu, w\}) \leq \frac{(n-3)^2}{4} \).

Add labels \(f(u) = 12, f(\nu) = 23, f(w) = 31 \).

For other \(x \), give a label to \(x \) and to \(N(x) \cap \{u, \nu, w\} \).

\[
\frac{(n-3)^2}{4} + 3 + (n - 3) \leq \frac{n^2}{4} - \frac{n}{2} + 3.
\]

If \(G \) is triangle-free nonbipartite, \(|E(G)| \leq \frac{n^2}{4} - \frac{n}{2} + 4 \).

Also \(\delta(G) \geq 2 \); use \(\Phi(G) \leq |E(G)| \).

If \(G \) is bipartite with two vertices having the same neighborhood, then \(\varphi(G) \leq \frac{(n-1)^2}{4} - \frac{n-1}{2} + 4 \).

If \(G \) is bipartite with no repeated nbhd, an edge must be deleted from all but one vertex of the larger part.

\(\delta(G) \geq 2 \), so \(\Phi(G) \leq |E(G)| \leq (k - 1)(n - k) \leq \frac{(n-1)^2}{4} \).
Open Problems

1) What is the complexity of computing $\varphi(G)$? Presumably $\varphi(G) \leq k$ is NP-hard on general graphs, but it is not yet proved. What about planar graphs?
Open Problems

1) What is the complexity of computing $\varphi(G)$? Presumably $\varphi(G) \leq k$ is NP-hard on general graphs, but it is not yet proved. What about planar graphs?

2) What is $\max \varphi(G)$ for n-vertex chordal graphs?
Open Problems

1) What is the complexity of computing $\varphi(G)$? Presumably $\varphi(G) \leq k$ is NP-hard on general graphs, but it is not yet proved. What about planar graphs?

2) What is $\max \varphi(G)$ for n-vertex chordal graphs?

3) What is $\max \varphi(G)$ over n-vertex G with $\theta_1(G) = k$? Note that $\theta_1(K_n) = 1$ and $\varphi(G) \sim \lg n$. Perhaps the maximum is achieved by $kK_{n/k}$.
Open Problems

1) What is the complexity of computing $\phi(G)$? Presumably $\phi(G) \leq k$ is NP-hard on general graphs, but it is not yet proved. What about planar graphs?

2) What is $\max \phi(G)$ for n-vertex chordal graphs?

3) What is $\max \phi(G)$ over n-vertex G with $\theta_1(G) = k$? Note that $\theta_1(K_n) = 1$ and $\phi(G) \sim \lg n$. Perhaps the maximum is achieved by $kK_{n/k}$.

4) How can one get the paper finished? (7 authors.)