The global attractivity and periodic character of some rational difference equations of arbitrary order

Kenneth S. Berenhaut
Department of Mathematics
Wake Forest University
Winston-Salem, NC 27109
e-mail: berenhks@wfu.edu

• This is joint work with John D. Foley (UCSD) and Stevo Stević (Mathematical Institute of the Serbian Academy of Science)
Before getting started, a little side item.
Call for papers

Involve is a self-sustaining long-term scientific journal dedicated to showcasing and encouraging the highest quality mathematical research involving students.

All manuscripts submitted for possible publication in Involve should be publishable in quality journals in their respective fields. Submissions in all mathematical areas are encouraged. However, each manuscript should include a minimum of 1/3 student authorship.

visit www.involvemath.org

Manuscripts submitted for possible publication should report on original research, should not have been previously published and should not be under consideration for publication by any other journal. Submissions should be sent electronically to Dr. Kenneth S. Berenhaut at berenhks@wfu.edu or to any member of the editorial board. If electronic submission is not possible, send four (4) copies of the manuscript to:
Dr. Kenneth S. Berenhaut
Department of Mathematics
Wake Forest University
Winston-Salem, NC 27109.

Editorial Board (to be completed)
Kenneth S. Berenhaut, managing editor
Wake Forest Univ.
John V. Baxley
Wake Forest Univ.
Arthur T. Benjamin
Harvey Mudd College
Michael Dorff
Brigham Young Univ.
Sever S. Dragomir
Victoria Univ.
Andrew Granville
Université de Montréal
Jerrold Griggs
Univ. of South Carolina
Johnny Henderson
Baylor Univ.
Gerry Ladas
Univ. of Rhode Island
Chi–Kwong Li
William and Mary
Robert B. Lund
Clemson Univ.
Frank Morgan
Williams College
Ken Ono
Univ. of Wisconsin
Joseph O'Rourke
Smith College
Robert J. Plemmons
Wake Forest Univ.
Robert W. Robinson
Univ. of Georgia
Filip Saidak
UNC Greensboro
Stevo Stević
Serbian Acad. of Science
John C. Wierman
Johns Hopkins Univ.

This not-for-profit enterprise is made possible partially through support from the Chambers Family Fund and the Office of Entrepreneurship and Liberal Arts at Wake Forest University.
Involve - A journal of mathematics

• www.involvemath.org

• Self-sustaining long-term scientific journal dedicated to showcasing and encouraging the highest quality mathematical research involving students (at all levels)

• The editorial board consists of several esteemed individuals who share a wealth of experience in dealing with and nurturing student involvement in important research. (e.g. Ken Ono, Andrew Granville, Robert Lund, Jerry Griggs, Chi-Kwong Li, Frank Morgan etc.)

• All manuscripts accepted for publication in Involve should be publishable in quality journals in their respective fields \(^a\). Submissions in all mathematical areas are encouraged.

• Each manuscript should include a minimum of 1/3 student authorship.
• not-for-profit enterprise made possible partially through support from a Chambers Fund grant.
• Hoping to launch with first issue in 2007!
• Still looking for a few more interested board members!
The Global Attractivity of the Rational Difference Equation $y_n = 1 + \frac{y_{n-k}}{y_{n-m}}$

by Kenneth S. Berenhaut, John D. Foley, and Stevo Stević

To appear in *Proceedings of the American Mathematical Society*
This paper studies the behavior of positive solutions of the recursive equation

\[y_n = 1 + \frac{y_{n-k}}{y_{n-m}}, \quad n = 0, 1, \ldots, \quad (1) \]

with \(y_{-s}, y_{-s+1}, \ldots, y_{-1} \in (0, \infty) \) and \(k, m \in \{1, 2, 3, 4, \ldots\} \), where \(s = \max\{k, m\} \).

“In this paper the authors study the global stability, the boundedness, and the periodic nature of the positive solutions of the difference equation (1) $x_{n+1} = \alpha + x_{n-1}/x_n$, where $\alpha \in (0, \infty)$, and where the initial conditions x_{-1} and x_0 are arbitrary positive real numbers. The authors show that a necessary and sufficient condition that every positive solution of (1) be bounded is $\alpha \geq 1$. Moreover, they show that if $\alpha = 1$ then every positive solution of (1) converges to a two-cycle, while if $\alpha > 1$, then $\overline{x} = \alpha + 1$ is a globally asymptotically stable equilibrium of equation (1).”

“We prove that every positive solution of the difference equation

\[x_n = 1 + \frac{x_{n-2}}{x_{n-3}}, \quad n = 0, 1, \ldots, \]

converges to a period two solution.”
$k = 2, \ m = 3$

\begin{equation}
y_n = 1 + \frac{y_{n-2}}{y_{n-3}}.
\end{equation}

Figure 1: $y_n = 1 + \frac{y_{n-2}}{y_{n-3}}$.
Figure 2: $y_n = 1 + y_{n-8}/y_{n-5}$.
\[k = 8, \quad m = 5 \]

Figure 3: \(y_n = 1 + y_{n-8}/y_{n-5}, \quad 1 \leq n \leq 100. \)

Figure 4: \(y_n = 1 + y_{n-8}/y_{n-5}, \quad 100 \leq n \leq 200. \)

Figure 5: \(y_n = 1 + y_{n-8}/y_{n-5}, \quad 200 \leq n \leq 300. \)
k even theorem

Theorem 1 *(Grove and Ladas)* Suppose that \(\gcd(m, k) = 1 \) with \(k \geq 2 \) even and \(m \geq 1 \) odd. Then every positive solution of (1) converges to a non-negative solution of (1) with period 2.
Figure 6: \(y_n = 1 + y_{n-7}/y_{n-3} \).

Figure 7: \(y_n = 1 + y_{n-9}/y_{n-5} \).

Figure 8: \(y_n = 1 + y_{n-9}/y_{n-5} \).
$k = 3, \ m = 4$

Figure 9: $y_n = 1 + y_{n-3}/y_{n-4},\ 4 \leq n \leq 30.$
\[k = 4, \ m = 3 \]

Figure 10: \(y_n = 1 + \frac{y_{n-4}}{y_{n-3}}, \ 1 \leq n \leq 50. \)
k odd theorem

Theorem 2 Suppose that $\gcd(m, k) = 1$ and that $\{y_i\}$ satisfies (1) with $y_{-s}, y_{-s+1}, \ldots, y_{-1} \in (0, \infty)$ where $s = \max\{m, k\}$. Then, if k is odd, the sequence $\{y_i\}$ converges to the unique equilibrium 2.
The Proof for k Odd

1 Preliminaries and Notation

Since the case $k = m$ is trivial, we will assume, throughout, that $k \neq m$.

- Consider the transformed sequence $\{y^*_i\}$ defined by

$$y^*_i = \begin{cases}
 y_i, & \text{if } y_i \geq 2 \\
 3 - \frac{1}{y_i - 1}, & \text{otherwise}
\end{cases},$$

for $i \geq 0$. (2)
Distance in the transformed space

• Define the sequence $\{\delta_i\}$ via $\delta_i = |2 - y_i^*|$ for $i \geq 0$, so that

$$\delta_i = \begin{cases} |2 - y_i|, & \text{if } y_i \geq 2 \\ \frac{|2 - y_i|}{y_i - 1}, & \text{otherwise} \end{cases}.$$

(3)
Contraction Lemma

Lemma 1 We have

\[\delta_n \leq \max\{\delta_{n-k}, \delta_{n-m}\}, \]

for all \(n \geq s \).
Proof.

Suppose that \(\max\{\delta_{n-k}, \delta_{n-m}\} < \delta_n \)

If \(y_n > 2 \)

\(y_{n-k} < y_n \)

\(y_{n-m} \geq 2 \) gives \(y_{n-m} > \frac{1}{y_{n-1}} + 1 \)

\(y_{n-m} \leq 2 \) gives \(y_n - 2 > 2 - y_{n-m}^* = \frac{1}{y_{n-m-1}} - 1 \)

and hence \(y_{n-m} > \frac{1}{y_{n-1}} + 1 \).

Hence,

\[
y_n = 1 + \frac{y_{n-k}}{y_{n-m}} < 1 + \frac{y_n}{y_{n-1} + 1} = y_n. \tag{5}
\]
Similarly, if \(y_n < 2 \), we have

- \(y_{n-k} > y_n \)
- \(y_{n-m} < \frac{1}{y_{n-1}} + 1 \).

Hence,

\[
y_n = 1 + \frac{y_{n-k}}{y_{n-m}} > 1 + \frac{y_n}{\frac{1}{y_{n-1}} + 1} = y_n. \tag{6}
\]

In either case, we have a contradiction, and the lemma follows. \(\blacksquare \)
Now, set

\[D_n = \max_{n-s \leq i \leq n-1} \{ \delta_i \}, \]

(7)

for \(n \geq s \).

The following lemma is a simple consequence of Lemma 1.

\[\star \]

Lemma 2 The sequence \(\{D_i\} \) is monotonically non-increasing in \(i \), for \(i \geq s \).

Since \(D_i \geq 0 \) for \(i \geq s \), Lemma 2 implies that, as \(i \) tends to infinity, the sequence \(\{D_i\} \) converges to some limit, say \(D \), where \(D \geq 0 \).
2 Convergence of solutions

Proof of Theorem 2. Suffices to show that \(\{y_i^*\} \) converges to 2.

- By the definition, the values of \(D_i \) are taken on by entries in \(\{\delta_j\} \),
- By Lemma 1, \(y_i^* \in [2-D_i, 2+D_i] \) for \(i \geq s \).
 \[\star \] Suppose \(D > 0 \).
- Then, for any \(\epsilon \in (0, D) \), we can find an \(N \) such that
 - \(y_N^* \in [2-D - \epsilon, 2-D + \epsilon] \) or \(y_N^* \in [2+D - \epsilon, 2+D + \epsilon] \) and
 - \(y_i^* \in [2-D - \epsilon, 2+D + \epsilon] \), for \(i \geq N - mk - s \).
If $y_N^* \in [2 + D - \epsilon, 2 + D + \epsilon]$

Suppose that $y_N^* \in [2 + D - \epsilon, 2 + D + \epsilon]$.

- Note that for ϵ sufficiently small, the hypotheses above guarantee that $y_{N-k} \geq 2$ and $y_{N-m} \leq 2$, where at least one of the inequalities is strict:
 - Suppose that $y_{N-k} \geq 2$ and $y_{N-m} \geq 2$. Then

$$y_N^* = 1 + \frac{y_{N-k}^*}{y_{N-m}^*} \leq 1 + \frac{2 + D + \epsilon}{2} = 2 + D - \epsilon - \left(\frac{D}{2} - \frac{3}{2} \epsilon\right)$$

$$< 2 + D - \epsilon$$

for ϵ sufficiently small, since $D > 0$. (Contradiction)
Suppose \(y_{N-k} \leq 2 \) and \(y_{N-m} \leq 2 \). Then

\[
y^*_N = 1 + \frac{1 + \frac{1}{3-y^*_{N-k}}}{1 + \frac{1}{3-y^*_{N-m}}} \leq 1 + \frac{2}{1 + \frac{1}{3-(2-D-\epsilon)}} = 1 + \frac{2}{1 + \frac{1}{1+D+\epsilon}}
\]

\[
= 2 + D - \epsilon - \frac{D^2 + D - (3\epsilon + \epsilon^2)}{2 + D + \epsilon} < 2 + D - \epsilon
\]

for \(\epsilon \) sufficiently small, since \(D > 0 \). (Contradiction)
\[y_{N-k} \geq 2 \text{ and } y_{N-m} \leq 2 \]

\[
\therefore \text{ Thus, assume that } y_{N-k} \geq 2 \text{ and } y_{N-m} \leq 2.
\]

Solving for \(y^*_{N-k} \) and \(y^*_{N-m} \) in

\[
y^*_N = y_N = 1 + \frac{y_{N-k}}{y_{N-m}} = 1 + \frac{y^*_{N-k}}{1 + \frac{1}{3-y^*_{N-m}}},
\]

we have

\[
y^*_{N-k} = (y^*_N - 1) \left(1 + \frac{1}{3-y^*_N} \right)
\]

and

\[
y^*_{N-m} = 3 - \frac{1}{\frac{y^*_{N-k}}{y^*_N - 1} - 1}
\]
Employing the inequalities $y_i^* \in [2 - D - \epsilon, 2 + D + \epsilon]$ and $y_N^* \in [2 + D - \epsilon, 2 + D + \epsilon]$, gives

$$2 + D + \epsilon \geq y_{N-k}^* \geq (1 + D - \epsilon) \left(1 + \frac{1}{3 - (2 - D - \epsilon)}\right)$$

$$= (1 + D - \epsilon) \left(\frac{2 + D + \epsilon}{1 + D + \epsilon}\right) = 2 + D - \epsilon \left(\frac{3 + D + \epsilon}{1 + D + \epsilon}\right)$$

$$\geq 2 + D - \epsilon \left(\frac{3 + D}{1 + D}\right)$$ \quad (13)$$

and

$$2 - D - \epsilon \leq y_{N-m}^* \leq 3 - \frac{1}{\frac{2 + D + \epsilon}{1 + D - \epsilon} - 1}$$

$$= 3 - \frac{1 + D - \epsilon}{1 + 2\epsilon} = 2 - D + \epsilon \left(\frac{3 + 2D}{1 + 2\epsilon}\right)$$

$$\leq 2 - D + \epsilon(3 + 2D).$$ \quad (14)$$
Thus

\[2 + D + \epsilon \left(\frac{3 + D}{1 + D} \right) \geq y^*_{N-k} \geq 2 + D - \epsilon \left(\frac{3 + D}{1 + D} \right) \]

(15)

and

\[2 - D - \epsilon(3 + 2D) \leq y^*_{N-m} \leq 2 - D + \epsilon(3 + 2D) \]
If \(y_N^* \in [2 - D - \epsilon, 2 - D + \epsilon] \)

Similarly when \(y_N^* \in [2 - D - \epsilon, 2 - D + \epsilon] \), \(y_{N-k} \leq 2 \) and \(y_{N-m} \geq 2 \), we have

\[
2 + D + \epsilon \left(\frac{3 + D}{1 + D} \right) \geq y_{N-m}^* \geq 2 + D - \epsilon \left(\frac{3 + D}{1 + D} \right) \tag{16}
\]

and

\[
2 - D - \epsilon(3 + 2D) \leq y_{N-k}^* \leq 2 - D + \epsilon(3 + 2D). \tag{17}
\]
Let $B = 3 + 2D > \frac{3 + D}{1 + D}$. Then, when $y_N^* \in [2 + D - \epsilon, 2 + D + \epsilon]$, iterating the above arguments gives

$$2 + D + \epsilon B \geq y_{N-k}^* \geq 2 + D - \epsilon B$$

$$2 + D + \epsilon B^2 \geq y_{N-2k}^* \geq 2 + D - \epsilon B^2$$

$$\vdots$$

$$\rightarrow 2 + D + \epsilon B^m \geq y_{N-mk}^* \geq 2 + D - \epsilon B^m$$ (18)

and,

$$2 - D - \epsilon B \leq y_{N-m}^* \leq 2 - D + \epsilon B$$

$$2 + D - \epsilon B^2 \leq y_{N-2m}^* \leq 2 + D + \epsilon B^2$$

$$\vdots$$

$$\rightarrow 2 + (-1)^k D - \epsilon B^k \leq y_{N-km}^* \leq 2 + (-1)^k D + \epsilon B^k.$$ (19)
Since k is odd, (18) and (19) give that

$$y^*_{N-mk} \leq 2 - D + \epsilon B^k$$ \hfill (20)

and

$$y^*_{N-mk} \geq 2 + D - \epsilon B^m.$$ \hfill (21)

Thus, for sufficiently small ϵ, we obtain a contradiction to the hypothesis that $D > 0$. A similar argument works when $y^*_N \in [2 - D - \epsilon, 2 - D + \epsilon]$, and the result is proven.
3 The periodic character of Equation (1)

Note that if $g = \gcd(m, k) > 1$ then $\{y_i\}$ can be separated into g different equations of the form

$$y^{(j)}_n = 1 + \frac{y^{(j)}_{n-k}}{y^{(j)}_{n-m/g}},$$

(22)

where $j \in \{1, 2, \ldots, g\}$. Hence, we may assume that $\gcd(m, k) = 1$.

Theorem 3 Suppose that $\gcd(m, k) = 1$ with $k \geq 2$ even and $m \geq 1$ odd. Then every positive solution of (1) converges to a non-negative solution of (1) with period 2.

Proof. See Grove and Ladas (2005), Theorem 5.3.
The next theorem follows upon application of Theorems 2 and 3.

Theorem 4 Suppose that $2^i \| k$ (i.e. 2^i is the largest power of 2 which divides m) and $2^j \| m$. Then, every solution of (1) converges to a period t solution, where t is given by

$$t = \begin{cases}
1, & \text{if } j \geq i \\
2 \gcd(m, k), & \text{otherwise}
\end{cases} \quad (23)$$
Remark 2. Note that the argument used to prove Theorem 2 can be modified to show that in the case that \(\gcd(m, k) = 1 \) with \(k \) even, the period two solution for \(\{y^*_n\} \) is in fact of the form

\[
\ldots, 2 - D, 2 + D, 2 - D, 2 + D, \ldots,
\]

where \(D \) is defined as in Section 2.
4 A variation on the theme: different constants and powers

The Global Attractivity of the Rational Difference Equation

\[y_n = A + \left(\frac{y_{n-k}}{y_{n-m}} \right)^p \]

by Kenneth S. Berenhaut, John D. Foley, and Stevo Stević

in press for Proceedings of the American Mathematical Society
This paper studies the behavior of positive solutions of the recursive equation

\[y_n = A + \left(\frac{y_{n-k}}{y_{n-m}} \right)^p, \quad n = 0, 1, \ldots, \quad (25) \]

with \(y_{-s}, y_{-s+1}, \ldots, y_{-1} \in (0, \infty) \) and \(k, m \in \{1, 2, 3, 4, \ldots\} \), where \(s = \max\{k, m\} \).

(The previous paper handled the case \(A = 1, \ p = 1 \).)
\(k = 3, \ m = 1, \ A < 1\)

Figure 11: \(y_n = A + y_{n-3}/y_{n-1}, \ A \in \{0.5, 0.414, 0.34, 0.1\}\).
\[k = 3, \ m = 1, \ A < 1 \]

Figure 12: \[y_n = A + y_{n-3}/y_{n-1}, \ A \in \{0.5, 0.414, 0.34, 0.1\}. \]
$k = 3, \ m = 1, \ A = .34$

Figure 13: \(y_n = .34 + \frac{y_{n-3}}{y_{n-1}}, \ 1 \leq n \leq 800 \).
Figure 14: $y_n = 0.34 + y_{n-3}/y_{n-1}$, $1 \leq n \leq 350$.
A well known conjecture

Conjecture 1 If $A < \sqrt{2} - 1$, then all positive solutions to the equation

$$y_n = A + \frac{y_{n-3}}{y_{n-1}}$$

(26)

converge to the unique equilibrium $A + 1$.
If $0 < A < 1$ and $0 < p \leq (A + 1)/2$

**

Theorem 5 Suppose that $m, k \geq 1$, and that p, A are positive numbers satisfying $0 < A < 1$ and $0 < p \leq (A + 1)/2$. If the sequence $\{y_i\}$ satisfies (25) with $y_{-s}, y_{-s+1}, \ldots, y_{-1} \in (0, \infty)$ where $s = \max\{m, k\}$, then, $\{y_i\}$ converges to the unique equilibrium $A + 1$.
Transformation

Set $z_n = y_n - A$, for $n \geq -s$. Then, equation (25) becomes

$z_n = \left(\frac{A + z_{n-k}}{A + z_{n-m}} \right)^p,$

(27)

for $n \geq 0$.

Now, define $\{z^*_i\}$ by

$z^*_i = \begin{cases}
 z_i, & \text{if } z_i \geq 1 \\
 \frac{1}{z_i}, & \text{otherwise}
\end{cases}.$

(28)
Important Elementary Inequality

Lemma 3 \textit{If} $x > 1$ \textit{and} $0 < A < 1$, \textit{then}

\[
\left(\frac{A + x}{A + 1/x} \right)^{\frac{A+1}{2}} \leq x,
\]

\textit{with equality if and only if} $x = 1$. (29)
Proof.

- The inequality in (29) is equivalent to

\[
g_A(x) \overset{\text{def}}{=} (A + 1) \ln \left(\frac{A + x}{Ax + 1} \right) - (1 - A) \ln x \leq 0. \tag{30}
\]

- \(\lim_{x \to +\infty} g_A(x) = -\infty \) and \(g_A(1) = 0 \).

- \[
g'_A(x) = -\frac{A(x - 1)^2 (1 - A)}{(A + x)(Ax + 1)x} < 0, \tag{31}
\]

when \(x \neq 1 \), since \(A \in (0, 1) \).

Hence, \(g_A(x) \) is decreasing, and thus is negative on the interval \((1, \infty)\). □

45
Contraction

Lemma 4 Suppose \(\{ z_i \} \) satisfies (27) with \(p \leq (A + 1)/2 \) and \(A \in (0, 1] \). Then,

\[
1 \leq z^*_n \leq \max\{ z^*_{n-k}, z^*_{n-m}\},
\]

for all \(n \geq s \).
Proof.

If $z_{n-k} > z_{n-m}$

- Suppose that $z_{n-k} > z_{n-m}$
 - Set $x = \max\{z^*_{n-k}, z^*_{n-m}\}$.
 - If $z_{n-k} \geq 1$ then $1 \leq z_{n-k} \leq x$ and consequently
 \[\frac{1}{x} \leq z_{n-k} \leq x, \] (33)
 - If $z_{n-k} < 1$, then $1/z_{n-k} = z^*_{n-k} \leq x$ from which (33) also holds.
- Similarly, we have that
 \[\frac{1}{x} \leq z_{n-m} \leq x. \] (34)
Then, for $n \geq s$, we have that

$$z^*_n = z_n = \left(\frac{A + z_{n-k}}{A + z_{n-m}} \right)^p \leq \left(\frac{A + z_{n-k}}{A + z_{n-m}} \right)^{\frac{A+1}{2}} \leq \left(\frac{A + x}{A + \frac{1}{x}} \right)^{\frac{A+1}{2}} \leq x,$$

where the final inequality in (35) follows from the inequality lemma.

\textbf{If } z_{n-k} \leq z_{n-m} \textbf{ }

\textbf{★} Similarly, suppose $z_{n-k} \leq z_{n-m}$. Then

$$z^*_n = \frac{1}{z_n} = \left(\frac{A + z_{n-m}}{A + z_{n-k}} \right)^p \leq \left(\frac{A + z_{n-m}}{A + z_{n-k}} \right)^{\frac{A+1}{2}} \leq \left(\frac{A + x}{A + \frac{1}{x}} \right)^{\frac{A+1}{2}} \leq x.$$

\textbf{★}
Non-increasing bounds

Now, set

$$D_n = \max_{n-s \leq i \leq n-1} \{z_i^*\}, \quad (37)$$

for $n \geq s$.

The following result is a simple consequence of Lemma 4 and (37).

\star

Lemma 5 The sequence $\{D_i\}$ is monotonically non-increasing in i, for $i \geq s$.

Since $D_i \geq 1$ for $i \geq s$, Lemma 5 implies that, as i tends to infinity, the sequence $\{D_i\}$ converges to some limit, say D, where $D \geq 1$.
5 Convergence of solutions

Showing $z^*_i \to 1 \ (D = 1)$

Proof of Theorem 5.

* Suffices to show that the transformed sequence $\{z^*_i\}$ converges to 1.

- For any $\epsilon > 0$, we can find an N such that
 - $z^*_N \in [D, D+\epsilon]$,
 - $z^*_i \in [1, D+\epsilon]$, for $i \geq N - s$.

- Similar to before,
 \[
 \frac{1}{D + \epsilon} \leq z_{N-m}, z_{N-k} \leq D + \epsilon. \tag{38}
 \]
We will show that $D = 1$.

Suppose $D > 1$,

- Note that $z_N^* \in [D, D + \epsilon]$, implies that $z_N \neq 1$.

If $z_n > 1$

First, consider the case $z_N > 1$.

- Then, $z_N = z_N^* \in [D, D + \epsilon]$.

- Solving for z_{n-k} in the definition, and employing the bounds, gives

$$D + \epsilon \geq z_{N-k} = z_N^{1/p} \left(A + z_{N-m} \right) - A$$

$$\geq D^{1/p} \left(A + \frac{1}{D + \epsilon} \right) - A$$

$$\geq D^{2/(k+1)} \left(A + \frac{1}{D + \epsilon} \right) - A. \quad (39)$$
This implies that

\[
\left(\frac{A + D + \epsilon}{A + \frac{1}{D+\epsilon}} \right) \geq D^{\frac{2}{A+1}}.
\]

(40)
If $z_n < 1$

Assume now that $z_N < 1$.

- Then, $\frac{1}{z_N} = z^*_N \in [D, D + \epsilon]$
- From the equation for $\{z_i\}$ and the bounds on z_{N-k} and z_{N-m}, it follows that

$$D + \epsilon \geq z_{N-m} = (z^*_N)^{1/p} (A + z_{N-k}) - A$$

$$\geq D^{1/p} \left(A + \frac{1}{D + \epsilon} \right) - A$$

$$\geq D^{\frac{2}{A+1}} \left(A + \frac{1}{D + \epsilon} \right) - A.$$ (41)

From (41) we have that (40) holds in this case, as well. Since $\epsilon > 0$ was arbitrary and $D > 1$, by Lemma 3 we arrive at a contradiction, which implies that $D = 1$, and the theorem follows.
Some difference equations with prime periodic solutions of high order

The Periodic Character of the Rational Difference Equation

\[y_n = \frac{y_{n-m} + y_{n-m-k}}{y_{n-k}} \]

by John D. Foley and Kenneth S. Berenhaut

To appear in International Mathematical Forum
\[y_n = \frac{(y_{n-7} + y_{n-9})}{y_{n-2}} \]
This paper studies the behavior of positive solutions of the recursive equation

\[y_n = \frac{y_{n-m} + y_{n-m-k}}{y_{n-k}}, \quad n = 0, 1, \ldots, \] \hspace{1cm} (42)

with \(y_{-s}, y_{-s+1}, \ldots, y_{-1} \in (0, \infty) \) and \(k, m \in \{1, 2, 3, 4, \ldots\} \), where \(s = k + m \).

● In Berenhaut, K. S., Dice, J. E., Foley, J. D., Iricanin, B. and Stevic, S., (2006) Periodic solutions of the rational difference equation \(y_n = \frac{y_{n-3} + y_{n-4}}{y_{n-1}} \), *J. Difference Equ. Appl.* 12, no. 2, 183–189, the authors proved that if \((k, m) = (1, 3)\), then every positive solution of (42) converges to a period two solution, answering Open Problem 11.4.8 (a) in Kulenović, M. R. S. and Ladas, G. *Dynamics of Second Order Rational Difference Equations. With open problems and conjectures.* Chapman and Hall/CRC, 2002.
Theorem for $y_n = \frac{y_{n-m} + y_{n-m-k}}{y_{n-k}}$

\[\star \]

Theorem 6 If $\text{gcd}(m, 2k) = 1$, then every positive solution to the equation is asymptotically $2k$-periodic.
Boundedness character of positive solutions of a max difference equations

by Kenneth S. Berenhaut, John D. Foley, and Stevo Stević

To appear in *Journal of Difference Equations and Applications*
In this paper, we consider the case $c \in (0, 1)$ and k odd for the equation

$$y_n = \max \left\{ c, \frac{y_{n-k}}{y_{n-m}} \right\}, \quad n \in \mathbb{N}_0,$$

(43)

where $k, m \in \mathbb{N}$.

- By using the change $y_n = 1/c^z_n$ the equation

becomes

$$z_n = \max\{-1, z_{n-k} - z_{n-m}\}, \quad n \in \mathbb{N}_0.$$

(44)
Periodicity for $z_i \in \mathbb{Z}$

\[\text{Theorem 7} \quad \text{Suppose that } \{z_n\} \text{ satisfies (44) with } z_{-s}, z_{-s+1}, \ldots, z_{-1} \in \mathbb{Z} \text{ where } s = \max\{m, k\}. \text{ Then, if } k \text{ is odd, the sequence } \{z_n\} \text{ converges to a periodic solution of the equation.}\]
We have the following conjecture regarding solutions to the equation.

\begin{equation}
\text{Conjecture 2 } \text{All positive solutions to the equation}
\end{equation}

\begin{equation}
z_n = \max\{-1, z_{n-k} - z_{n-m}\}
\end{equation}

with k odd are eventually periodic.
Figure 15: $z_n = \max\{-1, z_{n-3} - z_{n-7}\} \ (-1, 1, 10, -1, 2, 10, -1, 3, 9, -1, 4, 7, -1, 5, 4, -1, 6, 0, -1, 7, -1, -1, 8, -1, -1, 9, -1, 0, 10, \ldots)$.
What are the periodic solutions to $z_n = \max\{-1, z_{n-k} - z_{n-m}\}$?

- Define the function σ via

$$\sigma(n) \overset{\text{def}}{=} \max\{i \in \mathbb{N} : i(i - 1) \leq 2(n - 1)\} \quad (46)$$

for $n \in \mathbb{N}$.

Lemma 6 We have

$$\sigma(n) = \left\lfloor \sqrt{2n} \right\rfloor \quad (47)$$

for $n \geq 2$, where $[x]$ indicates the nearest integer function.

We define the integer function P via

$$P(m) \overset{\text{def}}{=} 2m + \sigma(m) = 2m + \left\lfloor \sqrt{2m} \right\rfloor. \quad (48)$$
High order prime periods for the equation
\[z_n = \max\{-1, z_{n-k} - z_{n-m}\} \quad (k \text{ odd}) \]

* *

Theorem 8 For every \(k, m \geq 1 \), with \(\gcd(k, m) = 1 \), there exists a prime period \(P(m^*) = 2m^* + \lfloor \sqrt{2m^*} \rfloor \) solution for some \(m^* > (k - 1)^2 / 2 \).
Table 1: Some apparent prime periods for sufficiently small A, for the equation $y_n = A + y_{n-k}/y_{n-m}$

<table>
<thead>
<tr>
<th>k</th>
<th>m</th>
<th>Apparent prime period</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>166</td>
</tr>
</tbody>
</table>
Table 2: Prime periods of solutions to the equation $z_n = \max\{-1, z_{n-k} - z_{n-m}\}$ for various k and m.

<table>
<thead>
<tr>
<th>k</th>
<th>m</th>
<th>m^*</th>
<th>prime periods ($P(m^*)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>9,11</td>
<td>22,27</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>10,12</td>
<td>24,29</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>77,82</td>
<td>166,177</td>
</tr>
</tbody>
</table>
\[z_n = \frac{1}{1000} + \frac{z_{n-3}}{z_{n-7}} \]

Figure 16: \(z_n = \frac{1}{1000} + \frac{z_{n-3}}{z_{n-7}} \) (log base 1/A scale).
\[\max\{-1, z_{n-3} - z_{n-7}\} \]

Figure 17: \(z_n = \max\{-1, z_{n-3} - z_{n-7}\} \)