A Lighting Model for Fast Rendering of Forest Ecosystems

Robert Geist, Jay Steele

Clemson University
Analytics

- Consider a sheaf of germs of holomorphic functions, \(\gamma \), for which we have the following:
Rendering Synthetic Ecosystems

Of interest in:

- architectural planning
- landscape design
- forest management
- special effects
Goal

Extend previous ray tracing approaches to include:

- diffuse leaf transparency
- inter-object light scattering
- complete CUDA-based implementation
- distribution across multiple GPUs

Maintain (sort of, almost, near) real-time performance.
Background

Approach draws principally from:

Overview

Components:

- hierarchical kd trees, with geometric instancing of Xfrog plant models
- CUDA-based ray tracing engine incorporating the short-stack kd traversal algorithm
- global illumination effects via modification of local ambient component
- global lighting model to generate these effects
Lighting Model

Use a lattice-Boltzmann solution to the volume radiative transfer equation:

\[
(\hat{\omega} \cdot \nabla + \sigma_t) L(\vec{x}, \vec{\omega}) = \sigma_s \int p(\vec{\omega}, \vec{\omega}') L(\vec{x}, \vec{\omega}') d\omega' + Q(\vec{x}, \vec{\omega})
\]

- \(L\) radiance
- \(\vec{\omega}\) spherical direction
- \(p(\vec{\omega}, \vec{\omega}')\) phase function
- \(\sigma_s/\sigma_a\) scattering/absorption coefficients
- \(\sigma_t = \sigma_s + \sigma_a\)
- \(Q(\vec{x}, \vec{\omega})\) emissive field (in the volume)
Lattice-Boltzmann Methods

- computational alternatives to finite-element/finite-difference methods for solving PDEs

Advantages:
- ease of implementation
- ease of parallelization
- ease of handling complex boundary conditions

Disadvantage: derivation (proof) can be "tedious"
Lattice-Boltzmann Methods

- computational alternatives to finite-element/finite-difference methods for solving PDEs
- comparable in speed, stability, accuracy, and storage

Advantages:
- ease of implementation
- ease of parallelization
- ease of handling complex boundary conditions

Disadvantage: derivation (proof) can be "tedious"
Lattice-Boltzmann Methods

- Computational alternatives to finite-element/finite-difference methods for solving PDEs
- Comparable in speed, stability, accuracy, and storage
- Simulate transport by tracing evolution of particle distributions through synchronous updates on discrete grid

Advantages:
- Ease of implementation
- Ease of parallelization
- Ease of handling complex boundary conditions

Disadvantage: Derivation (proof) can be "tedious"
Lattice-Boltzmann Methods

- computational alternatives to finite-element/finite-difference methods for solving PDEs
- comparable in speed, stability, accuracy, and storage
- simulate transport by tracing evolution of particle distributions through synchronous updates on discrete grid

- advantages:
 - ease of implementation
 - ease of parallelization
 - ease of handling complex boundary conditions
Lattice-Boltzmann Methods

- computational alternatives to finite-element/finite-difference methods for solving PDEs
- comparable in speed, stability, accuracy, and storage
- simulate transport by tracing evolution of particle distributions through synchronous updates on discrete grid
- advantages:
 - ease of implementation
 - ease of parallelization
 - ease of handling complex boundary conditions
- disadvantage: derivation (proof) can be “tedious”
Lattice-Boltzmann 3D Lighting

- use 19 directions: all lattice points of a cube of radius 1, minus the corners
- key quantity of interest: per-site photon density,
 \[f_m(\vec{r}, t) = \text{density arriving at lattice site } \vec{r} \in \mathbb{R}^3 \text{ at time } t \text{ in cube direction } \vec{c}_m, m \in \{0, 1, \ldots, 18\} \]
Lattice-Boltzmann 3D Lighting

- use 19 directions: all lattice points of a cube of radius 1, minus the corners

- key quantity of interest: per-site photon density,
 \[f_m(\vec{r}, t) = \text{density arriving at lattice site } \vec{r} \in \mathbb{R}^3 \text{ at time } t \text{ in cube direction } \vec{c}_m, \ m \in \{0, 1, \ldots, 18\} \]

- update: for lattice spacing, \(\lambda \), time step \(\tau \), update is

 \[
 f_m(\vec{r} + \lambda \vec{c}_m, t + \tau) - f_m(\vec{r}, t) = \Omega_m \cdot f(\vec{r}, t)
 \]

 where \(\Omega_m \) denotes row \(m \) of a \(19 \times 19 \) matrix, \(\Omega \), that describes scattering, absorption, and (perhaps) wavelength shift at each site.
Lattice-Boltzmann 3D Lighting

- use 19 directions: all lattice points of a cube of radius 1, minus the corners

- key quantity of interest: per-site photon density, \(f_m(\vec{r}, t) = \text{density arriving at lattice site } \vec{r} \in \mathbb{R}^3 \text{ at time } t \text{ in cube direction } \vec{c}_m, m \in \{0, 1, ..., 18\} \)

- update: for lattice spacing, \(\lambda \), time step \(\tau \), update is

\[
f_m(\vec{r} + \lambda \vec{c}_m, t + \tau) - f_m(\vec{r}, t) = \Omega_m \cdot f(\vec{r}, t)
\]

where \(\Omega_m \) denotes row \(m \) of a \(19 \times 19 \) matrix, \(\Omega \), that describes scattering, absorption, and (perhaps) wavelength shift at each site.

this is the entire model!
In general,

- conserve mass, \(\sum_m (\mathbf{\Omega}_m \cdot f) = 0 \)
- conserve momentum, \(\sum_m (\mathbf{\Omega}_m \cdot f) \mathbf{v}_m = 0 \), where \(\mathbf{v}_m = (\lambda/\tau) \mathbf{c}_m \)
- \(\mathbf{\Omega}_{i,j} \) controls scattering from direction \(\mathbf{c}_j \) into direction \(\mathbf{c}_i \)
- directional density \(f_0 \) holds the absorption/emission
Lighting Model (isotropic case)

\[\Omega_{0j} = \begin{cases}
-1 & j = 0 \\
\sigma_a & j > 0
\end{cases} \]

\[\Omega_{ij} = \begin{cases}
1/12 & j = 0 \\
\sigma_s/12 & j > 0, \ j \neq i \\
-\sigma_t + \sigma_s/12, & j = i
\end{cases} \]

\[\Omega_{ij} = \begin{cases}
1/24 & j = 0 \\
\sigma_s/24 & j > 0, \ j \neq i \\
-\sigma_t + \sigma_s/24, & j = i
\end{cases} \]

i = 1, ..., 6:

i = 7, ..., 18:
Lighting Model (derivation)

If \(\rho(\vec{r}, t) = \sum_{m} f_m(\vec{r}, t) \), limiting case of

\[
f_m(\vec{r} + \lambda \vec{c}_m, t + \tau) - f_m(\vec{r}, t) = \Omega_m \cdot f(\vec{r}, t)
\]

as \(\lambda, \tau \to 0 \) is

\[
\frac{\partial \rho}{\partial t} = D \nabla^2 \rho
\]

where the diffusion coefficient

\[
D = \left(\frac{\lambda^2}{\tau} \right) \left[\frac{(2/\sigma_t) - 1}{4(1 + \sigma_a)} \right]
\]
Lighting Model (derivation)

- If $\rho(\vec{r}, t) = \sum_m f_m(\vec{r}, t)$, limiting case of

$$f_m(\vec{r} + \lambda \vec{c}_m, t + \tau) - f_m(\vec{r}, t) = \Omega_m \cdot f(\vec{r}, t)$$

as $\lambda, \tau \to 0$ is

$$\frac{\partial \rho}{\partial t} = D \nabla^2_{\vec{r}} \rho$$

where the diffusion coefficient

$$D = \left(\frac{\lambda^2}{\tau} \right) \left[\frac{(2/\sigma_t) - 1}{4(1 + \sigma_a)} \right]$$

- consistent with previous approaches to modeling multiple photon scattering events
enclose each tree ("leaf cloud") in a 128^3 lattice
Lighting Model (application)

- enclose each tree ("leaf cloud") in a 128^3 lattice
- multiply entries of Ω by mean biomass density per lattice site
 - density 0 yields straight pass-through
 - density 1 yields full scattering
Lighting Model (application)

- enclose each tree (“leaf cloud”) in a 128^3 lattice
- multiply entries of Ω by mean biomass density per lattice site
 - density 0 yields straight pass-through
 - density 1 yields full scattering
- label each site “green” (allow forward scattering) or “brown” (backscattering only)
Lighting Model (application)

- enclose each tree (“leaf cloud”) in a 128^3 lattice
- multiply entries of Ω by mean biomass density per lattice site
 - density 0 yields straight pass-through
 - density 1 yields full scattering
- label each site “green” (allow forward scattering) or “brown” (backscattering only)
- still must determine σ_a and σ_s
Capturing Leaf Transparency

- absorption, reflection, transmission are wavelength dependent

To restrict wavelength dependence to three components, scale absorptance values from Knapp and Carter to obtain per-component model absorption coefficients, X_a, X_g, X_b; then $X_s = 1$.
Capturing Leaf Transparency

- absorption, reflection, transmission are wavelength dependent
- species dependent?

Knapp and Carter (Am. J. Botany 1998): amazing lack of variability across a wide range of species from a wide range of habitats conclude: single set of wavelength dependent parameters will suffice to determine... restrict wavelength dependence to three components scale absorptance values from Knapp and Carter to obtain per-component model absorption coefficients, X_a, X_g, X_b; then $X_s = 1$.
absorption, reflection, transmission are wavelength dependent

species dependent?

Knapp and Carter (Am. J. Botany 1998): amazing lack of variability across a wide range of species from a wide range of habitats

conclude: single set of wavelength dependent parameters will suffice to determine σ_a and σ_s
Capturing Leaf Transparency

- absorption, reflection, transmission are wavelength dependent

- species dependent?
 - Knapp and Carter (Am. J. Botany 1998): amazing lack of variability across a wide range of species from a wide range of habitats
 - conclude: single set of wavelength dependent parameters will suffice to determine σ_a and σ_s

- restrict wavelength dependence to three components
absorption, reflection, transmission are wavelength dependent

species dependent?

Knapp and Carter (Am. J. Botany 1998): amazing lack of variability across a wide range of species from a wide range of habitats conclude: single set of wavelength dependent parameters will suffice to determine σ_a and σ_s

restrict wavelength dependence to three components

scale absorptance values from Knapp and Carter to obtain per-component model absorption coefficients, σ_a^X, $X = R, G, B$; then $\sigma_s^X = 1 - \sigma_a^X$
Capturing Leaf Transparency

- scattering is anisotropic (and wavelength dependent)
Capturing Leaf Transparency

- scattering is anisotropic (and wavelength dependent)
- multiply σ_s in $\Omega_{i,j}$ by normalized phase function:

$$pn_{i,j}(g) = \frac{p_{i,j}(g)}{\left(\sum_{i=1}^{6} 2p_{i,j}(g) + \sum_{i=7}^{18} p_{i,j}(g)\right)/24}$$

where (Henyey-Greenstein)

$$p_{i,j}(g) = \frac{1 - g^2}{(1 - 2gn_i \cdot n_j + g^2)^{3/2}}$$

n_i is normalized direction, \vec{c}_i; $g \in [-1, 1]$ controls scattering direction
Capturing Leaf Transparency

per-component phase function parameter \((g)\) values:
Capturing Leaf Transparency

per-component phase function parameter \((g)\) values:

- transmittance and reflectance ratios from Knapp and Carter determine forward and backward scattering components by constraint:
 \[f s^X + bs^X = \sigma_S^X \]

- normalize:
 \[g^X = \frac{f s^X - bs^X}{f s^X + bs^X} \quad \text{for} \quad X = R, G, B \]
Capturing Leaf Transparency

per-component phase function parameter \((g)\) values:

- transmittance and reflectance ratios from Knapp and Carter determine forward and backward scattering components by constraint:
 \[fs^X + bs^X = \sigma^X_S \]

- normalize:
 \[g^X = \frac{fs^X - bs^X}{fs^X + bs^X} \quad \text{for } X = R, G, B \]

- note: identical transmittance and reflectance values for color component \(X\) yield isotropic scattering
Capturing Leaf Transparency

per-component phase function parameter \((g)\) values:

- transmittance and reflectance ratios from Knapp and Carter determine forward and backward scattering components by constraint:
 \[fs^X + bs^X = \sigma^X_S \]

- normalize:
 \[g^X = \frac{fs^X - bs^X}{fs^X + bs^X} \]
 for \(X = R, G, B\)

- note: identical transmittance and reflectance values for color component \(X\) yield isotropic scattering

- if node is classified as “brown,” \(g^X = -1\) all \(X\)

A Lighting Model for Fast Rendering of Forest Ecosystems – p.17/29
Lighting Model (implementation)

- run LB lighting model (CUDA) to steady-state as pre-processing step; store values
Lighting Model (implementation)

- run LB lighting model (CUDA) to steady-state as pre-processing step; store values
- ray trace (CUDA)
run LB lighting model (CUDA) to steady-state as pre-processing step; store values

- ray trace (CUDA)

- at each intersection point, read LB values at surrounding lattice nodes and interpolate
Lighting Model (implementation)

- run LB lighting model (CUDA) to steady-state as pre-processing step; store values
- ray trace (CUDA)
- at each intersection point, read LB values at surrounding lattice nodes and interpolate
- modulate LB value with texture and add to standard, local illumination
CUDA basics ...

- code organized around *kernels*, invoked on CPU, executed on GPU
- kernels invoked simultaneously by multiple threads
- threads organized (by programmer) into *blocks*
- each block is mapped to a *multiprocessor* (8 cores)
- minimum scheduling unit is a *warp* (32 threads)
- each MP executes a warp in 4 clock cycles
CUDA basics ...

- code organized around *kernels*, invoked on CPU, executed on GPU
- kernels invoked simultaneously by multiple threads
- threads organized (by programmer) into *blocks*
- each block is mapped to a *multiprocessor* (8 cores)
- minimum scheduling unit is a *warp* (32 threads)
- each MP executes a warp in 4 clock cycles
- memory management important!
- avoid control flow divergence within warps!
CUDA Ray Tracing

- store all kd trees in texture memory (cached)
CUDA Ray Tracing

- Store all kd trees in texture memory (cached)
- Thread block (one thread per ray) will trace 8×8 tile; warp receives 8×4 tile
- Kd traversal by *short-stack*; stack size 5, stored in shared memory
CUDA Ray Tracing

- store all kd trees in texture memory (cached)
- thread block (one thread per ray) will trace 8×8 tile; warp receives 8×4 tile
- kd traversal by *short-stack*; stack size 5, stored in shared memory
- 4 kernels:
 - primary rays (leaf shape from alpha of texture)
 - shadow rays
 - shading
 - tone mapping and down-sampling
CUDA Ray Tracing

- store all kd trees in texture memory (cached)
- thread block (one thread per ray) will trace 8×8 tile; warp receives 8×4 tile
- kd traversal by *short-stack*; stack size 5, stored in shared memory
- 4 kernels:
 - primary rays (leaf shape from alpha of texture)
 - shadow rays
 - shading
 - tone mapping and down-sampling
- OpenMPI distributes across multiple GPUs
Results

full LB scattering

local plus ambient to match
Results

local illumination only volume visualization of LB
Results (Beech Forest Scene)
Results (Pine Forest Scene)
Beech Forest Scene Composition

<table>
<thead>
<tr>
<th>species</th>
<th>instances</th>
<th>triangles/instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>red maple</td>
<td>12</td>
<td>115,529</td>
</tr>
<tr>
<td>ohio buckeye</td>
<td>285</td>
<td>168,520</td>
</tr>
<tr>
<td>paper birch</td>
<td>291</td>
<td>372,896</td>
</tr>
<tr>
<td>southern catalpa</td>
<td>206</td>
<td>155,342</td>
</tr>
<tr>
<td>american beech</td>
<td>168</td>
<td>496,719</td>
</tr>
<tr>
<td>total scene</td>
<td>962</td>
<td>273,376,528</td>
</tr>
</tbody>
</table>

A Lighting Model for Fast Rendering of Forest Ecosystems – p.25/29
Beech Forest Scene Execution Time

<table>
<thead>
<tr>
<th>platform</th>
<th>1 ray/pixel</th>
<th>4 rays/pixel</th>
<th>LB lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80</td>
<td>2.277 s</td>
<td>8.044 s</td>
<td>32.1 s</td>
</tr>
<tr>
<td>G200 EES</td>
<td>1.151 s</td>
<td>-</td>
<td>15.9 s</td>
</tr>
</tbody>
</table>

single GPU:

multiple GPUs:

<table>
<thead>
<tr>
<th>count</th>
<th>execution time (1 ray/pixel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.162 s</td>
</tr>
<tr>
<td>4</td>
<td>0.666 s</td>
</tr>
<tr>
<td>8</td>
<td>0.351 s</td>
</tr>
<tr>
<td>16</td>
<td>0.170 s</td>
</tr>
</tbody>
</table>
Beech Forest Scene Execution Time

<table>
<thead>
<tr>
<th>Platform</th>
<th>1 ray/pixel</th>
<th>4 rays/pixel</th>
<th>LB lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80</td>
<td>2.277 s</td>
<td>8.044 s</td>
<td>32.1 s</td>
</tr>
<tr>
<td>G200 EES</td>
<td>1.151 s</td>
<td>-</td>
<td>15.9 s</td>
</tr>
</tbody>
</table>

single GPU:

<table>
<thead>
<tr>
<th>G80 count</th>
<th>execution time (1 ray/pixel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.162 s</td>
</tr>
<tr>
<td>4</td>
<td>0.666 s</td>
</tr>
<tr>
<td>8</td>
<td>0.351 s</td>
</tr>
<tr>
<td>16</td>
<td>0.170 s</td>
</tr>
</tbody>
</table>
Conclusions

- Ray tracing forest ecosystems in real-time remains a difficult task.
- Global illumination (leaf transparency and inter-object light scattering) can be approximated by a lattice-Boltzmann model, executed as a relatively fast pre-processing step.
- Mapping the ray tracing engine to CUDA is promising: 16 G80s delivered 6 fps at resolution 896×448 on a scene with 273M triangles.
- Conjecture 24 G200s (full clock) would provide real-time.
Conclusions

- **Drawbacks (directions for future work):**

 - LB execution is not real-time. Reducing the lattice to 64^3 would make it sub-second, and it is easily distributed. Quality?
 - Device memory must hold models of all species. Hundreds of species could not be supported.
 - Adaptive transparency control (as yet) interferes with quality.
 - Ray tracing engine performance has room for improvement. Exploiting additional parallelism (single ray vs multiple triangles) at kd leaves is an interesting possibility.
Conclusions

- **Drawbacks (directions for future work):**
 - LB execution is not real-time. Reducing the lattice to 64^3 would make it sub-second, and it is easily distributed. Quality?
 - Device memory must hold models of all species. Hundreds of species could not be supported.
 - Adaptive transparency control (as yet) interferes with quality.
 - Ray tracing engine performance has room for improvement. Exploiting additional parallelism (single ray \rightarrow multiple triangles) at kd leaves is an interesting possibility.
Thanks!

- CISE Directorate of the US NSF - award EIA-0305318
- NVIDIA Corporation - graduate Fellowship
- NVIDIA Corporation - G200 EES